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THE THIN OIL FILM EQUATION

James L. Brown

Jonathan W. Naughton

Ames Research Center

SUMMARY

A thin �lm of oil on a surface responds primarily to the wall shear stress generated
on that surface by a three-dimensional ow. The oil �lm is also subject to wall pressure
gradients, surface tension e�ects and gravity. The partial di�erential equation governing
the oil �lm ow is shown to be related to Burgers' equation. Analytical and numerical
methods for solving the thin oil �lm equation are presented. A direct numerical solver is
developed where the wall shear stress variation on the surface is known and which solves
for the oil �lm thickness spatial and time variation on the surface. An inverse numerical
solver is also developed where the oil �lm thickness spatial variation over the surface at
two discrete times is known and which solves for the wall shear stress variation over the
test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical
solver provides a mathematically rigorous basis for an improved form of a wall shear stress
instrument suitable for application to complex three-dimensional ows. To demonstrate the
complexity of ows for which these oil �lmmethods are now suitable, extensive examination
is accomplished for these analytical and numerical methods as applied to a thin oil �lm in
the vicinity of a three-dimensional saddle of separation.
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1. INTRODUCTION

The response of a thin oil �lm on a surface subjected to a three-dimensional (3D)
aerodynamic ow proves to be of interest to the uid mechanics community for several
reasons. First, the study of thin oil �lms has led to new instrumentation which accurately
measures the wall shear stresses generated by 3D ows. Second, extensive use of oil ow
visualization on surfaces bounding 3D ows requires that we understand the limitations
of these oil ow techniques in the neighborhood of the complex topological features, in-
cluding singularities, of the limiting surface streamlines. Additionally, the study of thin
oil �lms provides an opportunity to consider the solution of nonlinear partial di�erential
equations with clear practical signi�cance and which require minimal computational and
programming resources.

Instrumentation based on thin oil �lms has undergone sustained development (Tanner,
et al.1�4; Monson, et al.5�7; Mateer, Monson, and Menter8) to provide accurate measure-
ment of the wall shear stresses generated on a test surface by aerodynamic ows. Recent
improvements (Naughton and Brown9�11), particularly for 3D ow applications, in the
form of the oil �lm wall shear stress instrument have been made possible by the appli-
cation of Computational Fluid Dynamics (CFD) solution techniques to the thin oil �lm
equation. Experimental wall shear stress measurements guide development of turbulence
models to further improve CFD solvers. An important barrier to the accurate prediction
by Navier-Stokes CFD solvers of complex 3D ows is the accurate modeling of the ow-
�eld turbulent Reynolds stresses. Considerable e�ort has been expended over the past six
decades in turbulence modeling with advances in this di�cult area being frustratingly slow.
The pace of improvement in turbulence modeling has improved recently, however, partly
due to a maturation in the numerical methods of Navier-Stokes solvers, and partly due to
enhanced instrumentation. Two instruments most relevant to improvements in turbulence
modeling are the laser Doppler velocimeter (LDV) and the laser interferometric skin fric-
tion (LISF) instruments. The LISF and related successor skin friction instruments deduce
the wall shear stress by analysis of either the thinning rate or the detailed shape of an oil
�lm which is initially spread on a test surface and which then responds to the aerodynamic
ow over that test surface. Prior to this study, self-similar 1D solutions for the oil �lm
response were used1�8 in the analysis for the oil-�lm based instruments. However, as these
oil-�lm based instruments are now being applied to complex 3D ow situations, a more
rigorous treatment of the oil �lm response is now required and is addressed by this present
work.

A further reason to study the thin oil ow equation is the utility of surface oil ow vi-
sualization technique (Maltby12). Surface oil ow visualization is one of several techniques
to discern the limiting streamline ow patterns on the surface. An aid to understand-
ing complex 3D ows is the topological analysis of these limiting streamlines (Tobak and
Peake13; Chapman and Yates14). Visualization, both of numerical solutions and experi-
mental ows, of these surface streamlines and associated singularities provides an overall



topological framework for categorizing and comprehending the complex ow patterns which
may arise. For 3D ows, the types of singularity points which may occur on surfaces are
the saddle of separation, the saddle of attachment, the node of separation, the node of
attachment, the focus of separation, and the focus of attachment. Limiting separation or
attachment lines connect these point singularities. A further surface streamline topolog-
ical rule is that these singularity points appear in combinations such that for a simply
connected closed body:

N � S = 2

where N is the total number of nodal and focal points appearing in the ow and S is
the total number of saddle points appearing in the ow. Easily overlooked are the node
of attachment at the nose of an aerodynamic body and the node of separation at the
tail. Symmetry of the ow can also lead to an undercount since a singular point may then
actually appear twice. The ow�eld need not be uniquely de�ned by the surface streamline
patterns observed.

The importance of the ability to correctly identify these singularity points and further
to predict with a Navier-Stokes solver the location of these singularity points is generally
underestimated. In particular, the saddle of separation and the saddle of attachment can
be di�cult to identify and yet either can appear in some ows at a particular location with
signi�cant impact on the ow�eld pattern above the surface. To miscalculate a singularity
point for a turbulent ow may be the consequence of an improper grid or more importantly
an improperly constructed turbulence model.

Squire15 provided the �rst theoretical study of the thin oil �lm equation. Numerical
solutions for the 1D thin oil �lm under a 2D aerodynamic ow were presented. In partic-
ular, the behavior of oil ow visualization in the vicinity of 2D separation was addressed.
Squire concluded that the thin oil �lm did not signi�cantly alter the boundary layer and
that oil ow visualization would tend to indicate 2D separation slightly upstream of the
actual boundary layer separation due to pressure gradient e�ects. Part of the purpose of
this present work is to extend the earlier work of Squire to consider 2D thin oil �lms under
3D aerodynamic ows.

A third reason for the study of the thin oil �lm equation lies in its utility in the study
of numerical methods. The thin oil �lm equation is an extension of the familiar Burgers
equation often used to test CFD numerical methods. As with Burgers' equation16, the thin
oil �lm equation is a scalar hyperbolic wave equation which may be solved by numerous
solution methods, including �nite-di�erence, �nite-volume, characteristic and Lagrangian
techniques. These thin oil �lm solutions can be accomplished in 1D or 2D on a workstation.
Additional advantages accrue to the study of the thin oil �lm equation, however, in that
for both the 1D and 2D forms the eigenvalue(s) and hence characteristic direction can be
forced to change sign at a particular location in a model problem. Further, in the present
article, we will demonstrate an inverse solution numerical method useful for the skin friction
instrument. Additionally, the thin oil �lm equation o�ers a context to study 1D and 2D
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model problems both numerically and experimentally which can provide particular insight
when uid mechanics students are introduced to numerical methods.

Note that the 1D thin oil �lm problems are associated with 2D aerodynamic ows,
while 2D thin oil �lm problems are associated with 3D aerodynamic ows. Where clarity
in this paper requires, we will speci�cally state, for example, 2D thin oil problem or
2D aerodynamic ow. Also, the two uids need not be restricted to oil and air, but to
clearly distinguish between the ow of the two uids, we shall use the terms \oil ow"and
\aerodynamic ow" throughout the remainder of the paper.

In the present study, both direct and inverse numerical solution techniques for the
thin oil �lm equation are developed. The direct numerical solver considers the case where
the wall shear stress �eld on the surface, �!� w(x; z), is known and the direct solver provides
the oil �lm thickness variation with time over the surface, h(x; z; t). The inverse numer-
ical solver considers the case where the oil �lm thickness variation at two discrete times,
h(x; z; t1) and h(x; z; t2), is known and the inverse solver then provides the wall shear stress
variation over the surface, �!� w(x; z).

In the sections to follow, the thin oil �lm equation is �rst derived. Next, various
solutions are demonstrated including exact 1D and 2D self-similar cases. Then numerical
procedures for both the direct and inverse solutions are presented. These solvers are then
applied to several example practical problems. Programs to solve these example problems
are written in the c programming language for use on a Unix workstation and are available
from the �rst author.
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2. THE GOVERNING PARTIAL DIFFERENTIAL EQUATION

The Navier-Stokes equations describe the response of a thin �lm of viscous liquid,
typically oil, which is initially spread on a surface and which then experiences a 3D ow
of a second uid, typically air, over that surface. Simpli�cations to the Navier-Stokes
equations for such an oil �lm ow are possible which still result in an accurate description
of the oil ow while considerably reducing the di�culty of the solution method. The thin
oil �lm equation derived below is essentially the continuity equation integrated across the
thickness of the thin oil �lm, with additional information incorporated from simpli�cations
of the x- and z-momentum equations. The derivation of the thin oil �lm equation is quite
straightforward but is described below to establish the restrictions on the equation and to
clarify the numerical procedures used to solve the equation.

Consider a thin �lm of viscous liquid, such as a silicone oil, initially placed on a test
surface as shown in �gure 1. Typically, the thickness of oil is a few microns in thickness
which varies with location and time. This test surface, and thus the oil �lm, is then
subjected to a 3D aerodynamic ow over the test surface. The 3D aerodynamic ow
generates on the test surface a wall shear stress vector, �!� = (�x(x; z); �z(x; z)), acting
tangential to the surface, and a wall normal stress or pressure, P (x; z), acting normal to
the surface. The oil �lm will ow in response to these wall stresses and to the gravitational
body force acting on the oil. Additionally, the oil �lm will experience surface tension
e�ects related to the curvature of the oil �lm surface. For the purposes of this derivation
we assume the 3D aerodynamic ow is steady with time.

The thickness of the �lm, h(x; z; t), will vary with position on the surface and with
time. To derive the di�erential equation governing the oil �lm behavior, consider the
control volume of �gure 1. The control volume encloses the full height of the oil �lm, h,
and is of �nite length, �x, and width, �z, aligned with the x and z axes, respectively.
Thus, the oil mass in the control volume at any time is given by mcv = �oh�x�z. A
change in �lm thickness, h, and, thus, mass in the control volume occurs during a time
interval, �t, due to the di�erences in mass ux normal to the four sides of the control
volume through which oil may ow:

�mcv=�t+�xF +�zG = 0

where

mcv = �oh�x�z

F =

Z Z
�oudA =

Z h

0

�oudy�z = �oUch�z

G =

Z Z
�owdA =

Z h

0

�owdy�x = �oWch�x
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Taking limits of �x, �z and �t) 0, we obtain:

@h=@t+ @Uch=@x+ @Wch=@z = 0

where we have de�ned:

Uch �

Z h

0

udy; and Wch �

Z h

0

wdy

The uxes, F and G, can be evaluated by means of a low-Reynolds number simpli�-
cation of the x- and z-momentum equations. The �lm Reynolds number may be evaluated
as a ratio of inertial e�ects to viscous e�ects:

Ref = (�oU
2
c =L)=(�oUc=h

2) = (�oUch=�o)(h=L)

To estimate the �lm Reynolds number we make use of Tanner's 1D self-similar solution
result, Uc = �h=2�o, along with estimates for h = 10�6m, L = 10�2m, � = 20N=m2,
�o = 1000Kg=m3, and �o = 100 centiStokes to obtain:

Ref � �h3=2�o�
2
oL = 10�8

As a consequence of the low Reynolds number, we ignore the inertial terms in the x-
momentum equations, giving within the oil �lm:

0 = @�x;o=@y � @Po=@x+ �ogx

For the purposes of clarity in this derivation, we introduce the subscript, o, to signify the
shear stress and pressure within the oil �lm, and the subscript, a, to signify the aerodynamic
wall shear stress and wall pressure which are applied as boundary conditions to the oil �lm
at the air/�lm interface located at y = h.

Integrating, from the air/�lm interface inward, for the shear stress variation through
the �lm layer: Z y

h

@�x;o
@y

dy = �x;o � �x;a = (
@Po
@x

� �ogx)(y � h)

Note, the y-momentum equation implies that the pressure, Po(x; z), may be assumed
constant across the oil �lm thickness.

Integrating again, but from the wall out into the �lm, gives:Z y

0

�x;ody =

Z y

0

�o
@u

@y
dy = �ou = �x;ay + (

@Po
@x

� �ogx)(y
2=2� hy)

Or, considering both the x and z components of velocity within the oil �lm:
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u = (�x;ay + (
@Po
@x

� �ogx)(y
2=2� hy))=�o (2:1a)

w = (�z;ay + (
@Po
@z

� �ogz)(y
2=2� hy))=�o (2:1b)

Integrating yet again �nally gives us an expression for the mean convective velocity:

Uch =

Z h

0

udy = �x;ah
2=2�o � (

@Po
@x

� �ogx)(h
3=3�o)

Similarly, from the z-momentum equation:

Wch =

Z h

0

wdy = �z;ah
2=2�o � (

@Po
@z

� �ogz)(h
3=3�o)

To account for surface tension e�ects, note that the pressure, Po, within the �lm will be
altered from the aerodynamic wall pressure, Pa, due to the curvature (1=Rx and 1=Rz) of
the oil �lm surface, hence:

Po = Pa + �(1=Rx + 1=Rz) � Pa � �(hxx + hzz)

Summarizing, the di�erential equation governing the response of a thin �lm of oil to
a 3D aerodynamic ow is:

@h

@t
+
@Uch

@x
+
@Wch

@z
= 0 (2:2a)

Uc =
�xh

2�o
� (

@P

@x
�
@�(hxx + hzz)

@x
� �ogx)(h

2=3�o) (2:2b)

Wc =
�zh

2�o
� (

@P

@z
�
@�(hxx + hzz)

@z
� �ogz)(h

2=3�o) (2:2c)

Equation 2.2, with slight rearrangement, was �rst given by Squire15, and we refer to this
equation as \Squire's Form" of the thin oil �lm equation. Tanner1 gave a di�erent form
which we refer to as \Tanner's Form" of the thin oil �lm equation. In Appendix A, the
equivalence of the two forms of the thin oil �lm equation is demonstrated through a metric
transformation.

The issue of boundary conditions will be treated in the solution subsections below.
Note, we have dropped the subscript, a, on �x, �z and P in the equation above and for the
rest of the paper since this subscript was introduced for clarity to distinguish between the
values within the oil �lm and the values imposed from the aerodynamic ow. Henceforth,
the aerodynamic wall shear stress and wall pressure meanings for these terms are assumed.
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In the absence of the surface tension term, which for many problems is negligible, the
thin oil �lm equation is �rst-order hyperbolic or wave-like with the characteristic direc-
tion of information propagation being indicated by the mean convective velocity vector,
(Uc,Wc). With inclusion of the surface tension term, the equation becomes elliptic.

Further observe that the � terms are multiplied by h2 whereas the remaining terms
are multiplied by h3. Thus, for h very small, the � terms typically dominate except near
singularities, where the shear stress approaches zero.

For the case where the pressure, gravity and surface tension terms are negligible
compared to the shear stress term, the thin oil �lm equation becomes:

@h

@t
+
@�xh

2=2�o
@x

+
@�zh

2=2�o
@z

= 0 (2:3)

In a coordinate independent form, the above equation becomes:

@h

@t
+r � (

h2

2�o
�!� ) = 0 (2:4)
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3. ANALYTICAL SOLUTIONS

Analytical solutions for the thin oil �lm equation are considered in this section. These
analytical solutions are for relatively simple test case conditions, but do include both 1D
and 2D thin oil �lm problems for 2D and 3D aerodynamic ows, respectively. These
analytical solutions can be instructive as to general thin oil �lm behavior as well as being
useful in their own right. More general cases, whether for 1D or 2D oil �lms, require
numerical solution procedures. Even for numerical procedures, the analytical solutions aid
in formulating boundary conditions. Furthermore, the analytical solutions considered in
this section then provide known test cases to assess the validity and accuracy of the more
general numerical solution procedures.

We start by establishing a self-similar form of the 2D oil �lm equation. Then, we
further reduce this equation to an ordinary di�erential equation for the 1D self-similar thin
oil �lm problem, and establish several self-similar relationships. Analytical 1D solutions
are then established. We then return to the 2D self-similar form, and, for special forms of
the wall shear stress under a 3D aerodynamic ow, establish 2D analytical solutions.

Consider the thin oil �lm equation where the pressure gradient, gravity and surface
tension terms are negligible:

@h

@t
+

@

@x
(
�xh

2

2�o
) +

@

@z
(
�zh

2

2�o
) = 0 (3:1)

We consider solutions which are self-similar in time of the form:

h(x; z; t) = H(x; z)=t (3:2)

Thus, @h=@t = �H=t2, giving the 2D self-similar form of the thin oil �lm equation:

�H +
@

@x
(
�xH

2

2�o
) +

@

@z
(
�zH

2

2�o
) = 0 (3:3)

In coordinate independent form, the above equation becomes:

�H +r � (
H2

2�o
�!� ) = 0 (3:4)

The self-similar solution, H(x; z), describes the asymptotic shape of the thin oil �lm at
large time.

3.1 1D ANALYTICAL SOLUTIONS

For a 1D thin oil �lm, the self-similar partial di�erential equation reduces to an ordi-
nary di�erential equation:
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H �
d

dx
(
�H2

2�o
) = 0 (3:5)

One 1D self-similar relation (Tanner and Blows1) can be established by integrating
the above equation from the leading edge where H = 0 at x = x0:

�(x) =
2�o
H2

Z x

x0

H dx =
2�o
h2t

Z x

x0

h dx (3:6)

Another self-similar relation is found by de�ning � � (�=�o)
1=2H and substituting in

equation 3.5 giving:

�(�o=�)
1=2 �

d

dx
(�2=2) = 0

or, rearranging

(�o=�)
1=2 = d�=dx

Integrating, with � = 0 at x = x0, and rearranging gives the 1D self-similar relation (also,
Tanner and Blows1):

H = ht = (�o=�)
1=2

Z x

x0

(�o=�)
1=2dx (3:7)

The relation given by equation 3.7 may be solved for H(x) given known �(x) by
numerical methods or, where suitable, in closed analytical form. Likewise, the relation
given by equation 3.6 may be solved for �(x) given known H(x). The studies of Tanner
and of Squire provide several such 1D solutions.

The simplest 1D self-similar thin oil �lm solution is for the case of constant wall shear
stress, �(x), where:

H� = ht� = �o(x� x0) (3:8)

Axisymmetric Analytical Solutions

For ows over axisymmetric bodies, the governing equation for a thin oil �lm becomes:

@h

@t
+ (

1

r
)
@

@s
(
r�h2

2�o
) = 0 (3:9)

and the time self-similar form becomes:
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H � (
1

r
)
d

ds
(
r�H2

2�o
) = 0 (3:10)

Rearranging and integrating from s0, where h = 0, to s:

� = (
2�o
rH2

)

Z s

s0

rH ds = (
2�o
rh2t

)

Z s

s0

rh ds (3:11)

Alternatively, substituting �2 � r�H2=�o into equation 3.10:

H = ht = (
�o
r�

)1=2
Z s

s0

(
�or

�
)1=2 ds (3:12)

As one example of a closed form axisymmetric thin oil �lm solution, consider the case
where the aerodynamic ow consists of the region about an axisymmetric stagnation point
or node of attachment formed by placing a circular plate normal to the ow. For this
case, r = s. A laminar solution for this axisymmetric stagnation point has been given by
Homann17, and is reported in both White18 and Churchill19. The wall shear stress on the
plate varies linearly as:

� = �r; � > 0 (3:13)

Assume the \leading edge" of the axisymmetric oil �lm is located some small distance,
r0, from the stagnation point. Integrating equation 3.12 with the known wall shear stress,
equation 3.13, gives the oil �lm shape:

H = ht = (�o=�)(1� r0=r); r > r0 (3:14)

For distances far from the stagnation point the oil will tend toward a uniform thickness,
which varies inversely with time. For locations close to the stagnation point, pressure
gradient e�ects become important which then require a non-similar numerical solution.
For an axisymmetric node of separation, we may also assume that the local shear stress
varies according to � = �r, except � < 0. The oil �lm leading edge is applied at r = r0,
and the ow of oil is inward toward the node of separation. The solution then is:

H = ht = (�o=j�j)(r0=r � 1); r < r0 (3:15)

For the axisymmetric node of separation, the singularity at r = 0 is avoided due to
both surface tension and pressure gradient e�ects not included in this time self-similar
solution.
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3.2 2D ANALYTICAL SOLUTIONS

Closed form analytical solutions may also be found for a number of interesting cases
of a 2D thin oil �lm responding to a 3D aerodynamic ow. The ow of a 2D thin oil �lm
in the immediate vicinity of 3D surface streamline topological singularities, such as nodes
and saddles, leads to closed form solutions. Additional 2D thin oil �lm test cases suitable
for testing numerical 2D thin oil �lm solvers involve axisymmetry and are also treated in
this section. These closed form solutions serve as suitable test cases for the more general
numerical 2D thin oil solvers, both direct and inverse, discussed in following sections. In
this subsection, we develop several of these closed form analytical solutions.

Analytical Solutions for Saddles and Nodes

A linearized form of the ow �eld about surface streamline singularities in 3D aerody-
namic ows was developed by Perry and Fairlie20. In this section, we make use of relations
based on their work to provide appropriate surface shear and wall pressure �elds which
may be generated by the ow�eld so as to study the response of a thin oil �lm about
such surface streamline singularity points. Through a suitable coordinate rotation and
stretching20, a \canonical" form of the surface singularities may be obtained. Thus, in
this section, although we consider saddles located on a plane of symmetry, the results are
more general. The papers of Perry and Fairlie20 and of Hung, Sung, and Chen21 should
be referred to for a more extensive development of the shear �eld and pressure �eld in the
vicinity about a singularity or critical point in 3D aerodynamic ows.

Consider the case of a surface streamline singularity, either a saddle or a node, located
on a surface along a plane of symmetry. Figures 2a and 2b show the de�ning streamlines
about a saddle of attachment and a saddle of separation, respectively. The streamlines
depicted are either constrained to the surface or form in a symmetry plane for the aero-
dynamic ow above the saddle. Note for the saddle of separation, a streamline originates
from the singularity point and departs into the ow upward from the surface. For a saddle
of attachment this streamline will have ow toward the surface. Figures 3a and 3b further
depict the surface streamlines about a saddle of attachment and a saddle of separation,
respectively. Figures 3c and 3d depict the surface streamlines about a node of attachment
and a node of separation, respectively. For convenience, we place the origin of the coordi-
nate system at the location of the surface streamline singularity, (x; z) = (0; 0), with the
plane of symmetry occurring along z = 0. At the surface singularity point, both the x-
and z-component of the wall shear stress go to zero, ((�x; �z) = (0; 0) at (x; z) = (0; 0)).

For some region locally about this singularity point, the wall shear stress varies ac-
cording to:

�x = ax

�z = bz
(3:16)
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The relative values of a and b determine the characteristics of the singularity. The
saddles and nodes of separation and attachment may thus be distinguished by the values
of a and b:

a < 0; b < 0; a+ b < 0 : node of separation

a < 0; b > 0; a+ b < 0 : saddle of separation

a < 0; b > 0; a+ b > 0 : saddle of attachment

a > 0; b > 0; a+ b > 0 : node of attachment

(3:17)

The pressure �eld on the surface may also be found, following the analysis of Perry
and Fairlie20:

@P

@x
= �(3a+ b)= tan �

@P

@z
= 0

(3:18)

where � is the departure angle of that limiting streamline which emanates from the singu-
larity point and which departs the surface into the ow above as depicted in �gure 2b. As
an aside, equation 3.18 implies that for a given value of @�x=@x = a < 0, a lower pressure
gradient will be associated with a saddle of attachment than the pressure gradient associ-
ated with a saddle of separation. This may be of practical importance where a laminar ow
generates a saddle of attachment for a given geometry, while a turbulent ow generates a
saddle of separation for the same ow geometry.

For the two types of saddles and for the node of separation, we have a < 0. The oil
leading edge is applied as a straight edge at, for example, x0 < 0, and the oil ows toward
the saddle point or node. The solution domain for the thin oil �lm is then x0 < x < 0.
For the node of attachment, ow is away from the node, and we may chose the solution
domain as x < x0 < 0. For the node of attachment, the leading edge of the oil �lm can
also be chosen to be at the node point (x0 = 0). Note that the special case of either the
axisymmetric node of separation or of attachment as treated in the previous section di�ers
in that a � b and the oil leading edge is applied not as a straight line but at the circle
de�ned by r = r0.

We �rst derive the shape of the surface streamlines, since along any given surface
streamline:

dz

dx
=

�z
�x

=
bz

ax

If we assume the streamline passes through the arbitrary point, (xs; zs), we may integrate
the above streamline relation to obtain:
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z

zs
= (

x

xs
)b=a = (

xs
x
)b=�a (3:19)

Curves demonstrating the above streamline equation for several values of a=b are shown
in �gures 3a-3d for the saddles and nodes of attachment and separation.

To proceed toward a closed form solution for the thickness distribution for an oil �lm
near a surface streamline singularity point, �rst consider the saddle of separation. The
streamline ow along the surface in the plane of symmetry is toward the saddle, and thus:

a < 0; and b > 0

Consider that the wall shear stress e�ects predominate over the pressure gradient and
surface tension e�ects, except very close to x = 0. To more properly examine the inclusion
of these e�ects, we will later resort to numerical solvers. With the assumption of negligible
pressure and surface tension, the 2D thin oil �lm equation takes the form of equation 3.1,
which we repeat here:

@h

@t
+

@

@x
(
�xh

2

2�o
) +

@

@z
(
�zh

2

2�o
) = 0

First, apply the known shear �eld of �x = ax, and �z = bz, and expand:

@h

@t
+ a

@

@x
(
xh2

2�o
) + �z

@

@z
(
h2

2�o
) + b(

h2

2�o
) = 0

Note that if the oil thickness, h, initially varies at most in x then there is no driving
force for h to subsequently acquire a variation in the z-direction. Thus, @h=@z = 0 not
only initially, but for all time. A variation in x must occur due to the leading edge. Thus,
h = h(x; t), which leads to:

@h

@t
+ a

@

@x
(
xh2

2�o
) + b(

h2

2�o
) = 0

Now, applying the self-similarity relation (h(x; t) = H(x)=t) and rearranging (b 6= 0
avoids the trivial 1D case):

dH=(�o � (a+ b)H=2) = dx=(ax) (3:20)

Excluding the special case where a+ b = 0, we integrate from x0, where h = 0, to x:

H = (
2�o
a+ b

)[1� (
x

x0
)
(a+b)
�2a ]; for 0 < x < x0 (3:21)

This solution, also see Tanner4, covers the interesting case of thin oil �lm response
in the vicinity of the surface singularities known as saddles of separation and saddles of
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attachment and is also valid for the node of separation, when such singularities are located
on a plane of symmetry. We will in later sections of this paper also obtain numerical
solutions and discuss in greater depth.

A node of attachment(a+ b > 0; a > 0; b > 0) has a di�erent domain of solution and
thus di�erent limits of integration for equation 3.20, resulting in:

H = (
2�o
a+ b

)[1� (
x0
x
)
(a+b)
2a ]; for 0 < x0 < x (3:22)

Oddly, for a node of attachment with the \leading edge" located at x0 = 0, the only
allowable self-similar solution is:

H = 2�o=(a+ b); for all x

The behavior of the oil �lm at the location of the saddle di�ers considerably for the
two types of saddles:

saddle of separation(a+ b < 0; a < 0; b > 0) : H !1; as x! 0

saddle of attachment(a+ b > 0; a < 0; b > 0) : H = 2�o=(a+ b); for x = 0

Also,
node of separation(a+ b < 0; a < 0; b < 0) : H !1; as x! 0

For the special case where a + b = 0, note that for oil to ow from the oil �lm leading
edge at x = x0 to the singularity at x = 0, we must have a < 0. For this special case,
integration of the ODE above from x0 toward x = 0 yields:

ht = H = (��o=a) lnx0=x; for x < x0; a < 0; and a+ b = 0 (3:23)

Examination of the form of these solutions, equations 3.21 and 3.23, suggests that a
suitable plot of H vs log10 x should prove useful in determining the ratio of the wall shear
stress slopes b=a and thereby, for example, allow determining whether a saddle is a saddle
of attachment or saddle of separation.

Analytical 2D Thin Oil Film Relations

For somewhat more general 2D thin oil �lm cases we can establish useful relations.
Consider equation 3.1, where we further assume that �x is a function of x only, and
�z = bz + f(x):

@h

@t
+

@

@x
(
�xh

2

2�o
) + �z

@

@z
(
h2

2�o
) + b(

h2

2�o
) = 0 (3:24)
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Note that h = h(x; t) is a possible solution. If the initial h is only a function of x,
(h0 = h0(x)), then initially @(h2)=@z = 0 and, consequentially, there is no driving force
for h to subsequently acquire a variation in the z-direction. Thus, we may seek solutions
for h where h is only a function of time and x.

Applying the self-similarity relation where h = H=t, noting @=@z = 0, and rearranging:

d

dx
(
�xH

2

2�o
) = H � (

bH2

2�o
) (3:25)

Integrating from x0, where h = 0, to x:

�x = (
2�o
H2

)

Z x

x0

H[1� (
bH

2�o
)] dx (3:26)
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4. NUMERICAL SOLUTIONS

Numerical procedures are required to solve for the general time-dependent response
of a thin oil �lm on a surface subjected to an aerodynamic ow. In the previous section,
we discussed special cases where time self-similar solutions of analytical form were pos-
sible. However, the inclusion of initial conditions, pressure gradient, gravity, centrifugal,
or surface tension e�ects, lead to a time-dependent oil �lm response which needs not be
self-similar in time. Also, the geometry of the oil �lm or the aerodynamic ow will not
typically lend itself to a known analytical solution. Fortunately, CFD methods are readily
available for application to the numerical solution of the general thin oil �lm problem. In
this section, we describe those methods which we have found most suitable.

Two primary numerical approaches were developed in the present studies. The �rst
approach we refer to as a direct solver, where the oil �lm thickness, h(x; z; t), is solved for
knowing the aerodynamic wall shear stress and wall pressure, and where gravity, centrifugal
and/or surface tension e�ects are included. The second approach we refer to as an inverse
solver, where the wall shear stress, �!� (x; z), is deduced knowing the response of the oil �lm
thickness at several times, h(x; z; t1) and h(x; z; t2), and the surface ow direction, (x; z),
as well as known wall pressure, and where the gravity, centrifugal and/or surface tension
e�ects are included. The inverse solver, in particular, provides a rigorous foundation for
the oil �lm method of experimental measurement of wall shear stress.

The numerical method described is chosen for its simplicity for use with both the
direct and inverse solvers. For the direct solver, the h solution is advanced in time, with
repeated sweeps through the grid. For the inverse solver, the � solution is simply marched
once in space through the grid. The dominant physical phenomenon described by the thin
oil �lm equation is hyperbolic, having a known characteristic direction. The characteristic
direction may be thought of as the direction in which information propagates. Each point
in the thin oil �lm is only under the immediate inuence of its upwind neighboring points.
Thus, the dominant hyperbolic nature of the thin oil �lm equation allows the direct solver
to advance the solution in time by means of a point-by-point implicit solution. Each point
is advanced in time once those neighbor points which are upwind are advanced in time.
Each time-advance sweep through the grid proceeds from the boundary points inward to
the interior points.

For the direct solver, addition of the surface tension term introduces an elliptic feature,
which allows information to propagate in all directions. However, the inuence of the
surface tension e�ects on a thin oil �lm will occur over only a quite limited region. The
oil �lm is thin (typically a few microns) and is assumed to cover an extended region of the
test surface. For surface tension to be signi�cant, the curvature of the �lm surface must
be signi�cant. For the �lm to remain thin, this curvature cannot cover a large region. A
variety of elliptic solution methods may be applied to implement the surface tension terms.
Particularly in two directions, implicit methods unnecessarily complicate the solver. Due
to the large time scale associated with the surface tension terms, however, the simplest
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approach is to incorporate the surface tension explicitly and limit the time step. The time
scale for surface tension, (�t� � �oL

4
�=�h

3), is typically quite large (days rather than
seconds), particularly when compared to the time scale required for accurate solution of
the shear stress terms. Thus, explicit treatment of the complete surface tension terms in
an otherwise implicit point-wise direct solver should prove su�cient and quite practical
for most shear-driven applications. An example of a line-implicit treatment of the surface
tension term (for one predominant direction only) is included in the application section.

For the inverse solver, in contrast, the thin oil �lm equation remains hyperbolic, even
with the inclusion of the surface tension terms, which then are known source terms.

In the following subsections, we �rst describe the numerical procedures we use for an
interior node of the direct solver. A Box-Implicit numerical method is described. The as-
sociated numerical boundary conditions are then described. An alternative Finite-Volume
Upwind-Implicit numerical method is also presented. In the �nal subsection, the inverse
solver numerical methods are described.

4.1 DIRECT NUMERICAL SOLUTIONS

To simplify the derivation of the numerical method, we �rst neglect the pressure
gradient, gravity, centrifugal and surface tension e�ects and then add these e�ects later
in the section. Considering only the viscous terms in the oil ow, the partial di�erential
equation for an interior point of a thin oil �lm is given by a simpli�ed version of equation
2.2:

@h

@t
+

@

@x
(Uch) +

@

@z
(Wch) = 0 (4:1a)

Uc =
�xh

2�o
(4:1b)

Wc =
�zh

2�o
(4:1c)

The above partial di�erential equation is hyperbolic and at any point considered
the equation represents a specialized form of the continuity equation which depicts the
convection of the conserved variable h (related to the oil mass at a point) at a velocity
Uc in the x-direction and at a velocity Wc in the z-direction. Any numerical method to
be successful for application with this equation should be conservative and time-accurate,
with consideration given to the direction of the convective velocity.

First integrate the partial di�erential equation at an arbitrary point with respect to
time, between the two times, t1 and t2, giving:

(h2 � h1) +
@

@x
(
�x
2�o

Z t2

t1

h2dt) +
@

@z
(
�z
2�o

Z t2

t1

h2dt) = 0 (4:2)
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Note, the wall shear stress components, �x(x; z) and �z(x; z), are assumed to be known
from the aerodynamic ow and are steady in time. We also assume the oil viscosity is
steady in time. We have seen in the prior section on analytical solutions that the oil �lm
thickness tends to vary inversely with time according to h � t�1. Because of this inverse
time relation over much of the oil �lm, greater practical accuracy can be obtained by
evaluating the integral with the numerical quadrature given by:

Z t2

t1

h2dt = h1h2(t2 � t1) (4:3)

The above quadrature is exact for h � t�1 while only formally �rst-order accurate.
Use of a formally second-order accurate quadrature, such as (h1+h2)

2(t2� t1)=4, actually
results in a reduction in time accuracy for many practical cases where the h � t�1 time-
similarity is approached. As a consequence of the time-integration, equation 4.2 becomes:

(h2 � h1) +
@

@x
(
�x
2�o

h1h2�t) +
@

@z
(
�z
2�o

h1h2�t) (4:4)

Box-Implicit Direct Solver: Interior Node

We now require spatial-discretization of the oil �lm into a 2D array of nodes, (i =
1; imax, and j = 1; jmax), with even spacing, �x and �z in x and z, respectively. Thus,
xi;j = i�x and zi;j = j�z. More complex gridding treatments can be accommodated but
are not treated here.

To develop the Box-Implicit numerical procedure, consider the solution molecule
shown in �gure 4. It is assumed that we know the solution at the time level t1 and
that we desire to advance the solution at node (i; j) to the new time level, t2. We assume
the convective velocities are Uc > 0 and Wc > 0. Thus, to solve for h2;i;j = h(xi;j ; zi;j; t2)
we require the solution at nodes (i� 1; j), (i; j� 1), and (i� 1; j� 1) to have already been
advanced to the new time level, t2. To achieve second-order accurate approximations to
the spatial derivatives, @=@x and @=@z, we evaluate at the midpoint of the control volume,
i� 1=2; j � 1=2:

@(�xh1h2=�o)

@x i�1=2;j�1=2
= [(�xh1h2=�o)i;j � (�xh1h2=�o)i�1;j

+ (�xh1h2=�o)i;j�1 � (�xh1h2=�o)i�1;j�1]=(2�x)

and
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@(�zh1h2=�o)

@z i�1=2;j�1=2
=[(�zh1h2=�o)i;j � (�zh1h2=�o)i;j�1

+ (�zh1h2=�o)i�1;j � (�zh1h2=�o)i�1;j�1]=(2�z)

where �x = (xi;j � xi�1;j) and �z = (zi;j � zi;j�1). Substituting into equation 4.4 and
gathering terms:

h2;i;j+�t(h1h2=�o)i;j(
�x
�x

+
�z
�z

)i;j =

[h1;i;j + (h1 � h2)i�1;j�1 + (h1 � h2)i�1;j + (h1 � h2)i;j�1]

+ [(�xh1h2=�o)i�1;j�1 + (�xh1h2=�o)i�1;j � (�xh1h2=�o)i;j�1](�t=�x)

+ [(�zh1h2=�o)i�1;j�1 + (�zh1h2=�o)i;j�1 � (�zh1h2=�o)i�1;j](�t=�z)

(4:5)

Now solving for h2;i;j, the oil �lm thickness at the new time level:

h2;i;j =f[h1;i;j + (h1 � h2)i�1;j�1 + (h1 � h2)i�1;j + (h1 � h2)i;j�1]

+ [(�xh1h2=�o)i�1;j�1 + (�xh1h2=�o)i�1;j � (�xh1h2=�o)i;j�1](�t=�x)

+ [(�zh1h2=�o)i�1;j�1 + (�zh1h2=�o)i;j�1 � (�zh1h2=�o)i�1;j ](�t=�z)g

=[1 + �t(h1=�o)i;j(
�x
�x

+
�z
�z

)i;j ]

(4:6)

Equation 4.6 is the 2D Box-Implicit algebraic equation which allows us to numerically
solve the 2D thin oil �lm equation, equation 4.1, at an interior node. The Box-Implicit
node equation, as derived here, is second-order accurate in space, with \quasi"-higher-order
treatment of the time variation. The equation is conservative of the oil mass. The Box
method is known to be unconditionally stable. The related boundary condition treatment
required to solve a problem is dealt with in the next subsection.

The interior node equation, equation 4.6, clearly can be solved a single node at a time,
with each interior node being solved sequentially.

The form of the Box-Implicit interior node equation, as given by equation 4.6, is
incomplete in that it does not include additional e�ects, for example, pressure gradient
e�ects. If the oil �lm is su�ciently thin, these additional e�ects are of minimal signi�cance.
However, a more complete form of the interior node equation is:

h
[k]
2;i;j =f[h1;i;j + (h1 � h2)i�1;j�1 + (h1 � h2)i�1;j + (h1 � h2)i;j�1]

+ [(Tx � �x)i�1;j�1 + (Tx � �x)i�1;j � (Tx � �x)i;j�1](�t=�x)

+ [(Tz � �z)i�1;j�1 + (Tz ��z)i;j�1 � (Tz � �z)i�1;j ](�t=�z)g

=[1 + �t(
eTx � e�[k]

x

�x
+

eTz � e�[k]
z

�z
)i;j]

(4:7)
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where

Tx ��xh1h2=�o = � cos()h1h2=�o

Tz ��zh1h2=�o = � sin()h1h2=�o

�x �(@P=@x� �ogx)h1h2(h1 + h2)=3�o

�z �(@P=@z � �ogz)h1h2(h1 + h2)=3�oeTx ��xh1=�o = � cos()h1=�oeTz ��zh1=�o = � sin()h1=�oe�[k]
x �(@P=@x� �ogx)h1(h1 + h

[k�1]
2 )=3�oe�[k]

z �(@P=@z � �ogz)h1(h1 + h
[k�1]
2 )=3�o

h
[0]
2;i;j =h1;i;j

k =1; :::; kmax = node iteration level

(4:8)

To derive equation 4.7, we have made use of the numerical quadrature given by:

Z t2

t1

h3dt = (
h1 + h2

2
)h1h2(t2 � t1) (4:9)

As with equation 4.3, equation 4.9 is �rst-order accurate in time, but is a quasi-higher-
order time variation treatment since the numerical quadrature is exact for the practical
case of h � t�1.

Due to the presence of h2 in the e�x and e�z terms, iteration at each node (k = 1; kmax)
is required to advance the solution to the new time level. Also, the (i; j, etc.) subscripts
are absorbed inside the parentheses as required to allow evaluation of each term of equation
4.7 at the proper locations.

An important property of the interior node equation (either equation 4.6 or 4.7)
is that the 1D self-similar problem solution for constant � (eq. 3.8, h�t = �ox) exactly
satis�es either of these algebraic relations. This property of consistency of the interior node
algebraic equations with the 1D self-similar problem considerably enhances the accuracy
of the solution method for most practical problems encountered.
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Surface Tension Terms

Equation 4.7, as shown, does not include surface tension e�ects, and, thus, the hyper-
bolic nature of the partial di�erential equation is exploited by requiring only a node-by-
node solution procedure. The inclusion of surface tension incorporates an elliptic feature
and the solution molecule at node (i; j) should then include, for the additional surface
tension terms, information from the nodes between (i � 2; j) and (i + 2; j) and between
(i; j � 2) and (i; j + 2).

The simplest surface tension thin oil �lm approach is to recognize that the time scale
which characterizes surface tension is typically much greater than the time scale which
characterizes a thin oil �lm acting under shear stress. Thus, the surface tension adjustment
to the wall pressure at each node will be essentially constant during the integration time
step, �t. A su�cient treatment of surface tension for most thin oil �lm calculations would
be an explicit approach where the adjustment to pressure is made at the known time level,
t1, prior to each time step:

P = Pair + P�; where P� � ��[(h1)xx + (h1)zz] (4:10)

An example of an implicit elliptical surface tension treatment is given in the applica-
tion section for problems where surface tension acts only in the x direction. However, we
normally would take the above rather simplistic explicit approach due to the predominance
of the viscous terms over surface tension for the thin �lms which we likely will have an
interest in solving. This is done in order to maintain the simple to code node-by-node
solution procedure.
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Numerical Boundary Conditions

The solution at the interior nodes must be started with an initial condition, where an
initial value of oil �lm thickness h(x; z; t0) is assigned, and then the solution is advanced to
the next time level starting at boundary nodes. Thus, numerical treatments of the initial
and boundary conditions are required. The types of boundary conditions required include
a leading edge case, a corner leading edge case, a plane of symmetry case, a general surface
streamline case and a boundary wall (no-ow) case. An important consideration for 2D
oil �lm problems is that the boundary condition treatment will depend on whether the
characteristics point into or out of the oil �lm domain at any particular location on the
boundary.

Leading Edge Boundary Condition

The leading edge of an oil �lm is the contact line separating the region of the test
surface covered by the oil �lm from the region of the test surface exposed directly to the
aerodynamic ow. The wall shear stress at the leading edge will cause oil to ow from the
leading edge into the region covered by the oil. A leading edge may be used as a boundary
condition since the oil �lm height at the leading edge is known (h = 0), and the direction of
the wall shear stress, �x and �z, suggests that the convective velocities, Uc and Wc, within
the oil �lm immediately adjacent to the leading edge allow solution at the interior nodes.
In contrast, at a trailing edge, the wall shear stress will have a direction pointing out of
the oil �lm region. The advancement of the oil �lm trailing edge over a fresh surface can
be a di�cult subject, involving �nger instabilities, and is not treated in this present work.
Therefore, the trailing edge is not a suitable boundary condition for a thin oil �lm solver.

Over an extended period of time for which air ow occurs past a thin oil �lm, the
leading edge of the thin oil �lm will eventually move in the direction of the aerodynamic
ow, uncovering the test surface. However, here we consider the use of oil �lms in aerody-
namics testing, and for moderate run times the oil �lm leading edge may be considered to
be stationary.

Further, a complete consideration of the uid mechanics occurring at the leading
edge of a thin oil �lm will include surface tension e�ects. At the leading edge, a contact
line occurs which is de�ned by the juncture of the solid-air, solid-oil, oil-air interfaces as
depicted in �gure 5. Discussion of surface tension e�ects at the leading edge will be deferred
to the applications section (Section 5). However, the amount of oil mass present in the
control volume associated with the boundary nodes is quite small and for many practical
cases, the simpli�ed treatment of the leading edge presented here proves su�cient.

The simplest leading edge treatment is to align the grid so that either the i = 0 or
j = 0 boundary nodes line up precisely along the actual oil �lm leading edge. The oil �lm
thickness for these boundary nodes is then simply held at h = 0, and the solution actually
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starts at the next row of interior nodes, i = 1 or j = 1, using a variant of the interior node
equation 4.6:

h2;1;j =[h1;1;j + (h1 � h2)1;j�1 + (h1h2�t=�o)1;j�1(
2

3

�z
�z

�
�x
�x

)1;j�1]

=[1 + (h1�t=�o)1;j(
�x
�x

+
2

3

�z
�z

)1;j]; j = 2; ::; jmax

(4:11)

Equation 4.11 is the boundary condition equation for the i = 1 row of interior node
points for a leading edge at i = 0. Derivation of equation 4.11 is based on a control
volume analysis which makes use of the mass ux in the z-direction integrated over the
face between (1; j) and (0; j):

Z t2

t1

Z �x

0

�zh1h2=�odxdt = (�zh1h2=�o)1;j�t�x=3 (4:12)

Note that at the leading edge the oil �lm thickness varies as h � x=t between nodes
at i = 0 and i = 1. A similar node equation is easily derived for the case of a leading edge
at j = 0.

The intersection of two leading edges, with the i = 0 row of boundary node points
forming one leading edge and the j = 0 row of boundary node points forming the other
leading edge, creates the natural place, (i = 1; j = 1), to start the process of solving for
interior nodes. Again, a control volume analysis for this corner node with h0;1 = h1;0 =
h0;0 = 0, and assuming a linear variation of oil �lm thickness toward the node at (1; 1)
leads to the corner leading edge node equation:

h2;1;1 = h1;1;1=[1 + �t(h1=�o)1;1(
�x
�x

+
�z
�z

)1;1] (4:13)

Plane of Symmetry Boundary Condition

A plane of symmetry for the aerodynamic ow may serve as a boundary condition
for the thin oil �lm equation. Consideration of the plane of symmetry (aligned with the
x-axis) leads to the following relations:

a. @h=@z = 0, but h 6� 0.
b.  = 0, but @=@z 6� 0, which implies �z = 0, but @�z=@z 6� 0.
c. �ogz = 0, but @�ogz=@z 6� 0.
d. @P=@z = 0, but P 6� 0, and @2P=@z2 6� 0.

The surface streamline angle, tan() = �z=�x, may be derived from the known shear �eld.
We assume the row of boundary nodes, (i = 1; imax, and j = 0), is aligned along

the line of symmetry formed in the thin oil �lm. The numerical form of the symmetry
boundary conditions is based on equation A.3, repeated here as:
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@h
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Evaluating at (i� 1=2; 0) using the same numerical techniques leading to the interior
node equation 4.6 results in:
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(4:14)

Equation 4.14 applies in the absence of pressure and/or gravitational e�ects. For the
more general case where pressure and/or gravitational e�ects are included, we start with
the complete form of the plane of symmetry equation:

@h

@t
+

@

@x
(
�xh

2

2�o
) + (

�xh
2

2�o
)
@

@z
�

@

@x
[(
@P

@x
� �ogx)

h3

3�o
]� (

h3

3�o
)(
@2P

@z2
�
@�ogz
@z

) = 0 (4:15)

An equation similar to the interior node equation 4.7, but for the boundary nodes
located on the plane of symmetry can now be derived from equation 4.15:
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where

Tx ��xh1h2=�o = � cos()h1h2=�o
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(4:17)
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The @�ogz=@z term may appear if the plane of symmetry of the body cuts vertically
through the body. The addition of the pressure and gravity terms requires an iteration
at each node as was done for the interior node equation 4.7. Further, as with the interior
node equation 4.7, if surface tension terms are to be included, we adjust the pressure using
equation 4.10 in a global iteration scheme.

Wall or No-Flow Boundary Condition

A wall boundary condition may be used if the thin oil �lm is bounded on one side by
a solid wall. The development is similar to the plane of symmetry boundary condition in
that there is no oil ow through the boundary. Indeed, in the absence of pressure gradient
or gravity e�ects, the plane of symmetry equations, equations A.3 and 4.14, may be used
for a solid wall boundary.

If the e�ects of pressure gradients, gravity, and/or surface tension are to be included,
however, the @P=@z and @h=@z gradients need not be zero for the wall boundary conditions.
As a consequence, a preferable form of the applicable governing di�erential equation for
the thin oil �lm along a wall boundary is:
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The following numerical quadrature should prove useful in deriving the wall boundary
node equation:

Z t2
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h2
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@z

+
@h2
@z

)(t2 � t1) (4:19)

Since the wall boundary condition has not been tested in this present study, we defer
in presenting the form of the wall node equation which includes the pressure gradient
e�ects.

Other potentially useful boundary conditions include a plane of symmetry intersecting
a solid wall, a solid wall intersecting another solid wall, and a general surface streamline.
The general surface streamline boundary condition can be derived for the situation where
the oil streamline is known and the boundary is chosen so as to align with the known
surface streamline. The plane of symmetry boundary condition is a special case of the
general surface streamline boundary condition. The general surface streamline boundary
condition should prove most useful for a mapped grid and is based on equation A.3.
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Finite-Volume Upwind-Implicit Direct Solver: Interior Node

An alternate approach to the �nite-di�erence Box-Implicit numerical method is the
Finite-Volume Upwind-Implicit numerical method. Here, we briey develop only the in-
terior node equation for a 1D thin oil �lm case, with Uc > 0. The extension to 2D and
a change in sign of Uc is not considered here. Further, the pressure gradient, gravity,
centrifugal and surface tension terms are not included, since these terms may be treated
in a manner similar to that employed for the Box-Implicit numerical method.

Figure 6 shows a 1D interior node computational molecule for the Finite-Volume
Upwind-Implicit method. For the Finite-Volume method, hi represents the \average" oil
�lm thickness within the node volume which lies between xi and xi+1. When needed, we
may use the approximation that the height hi is located at the midpoint of the node, (xi+
xi+1)=2. In contrast, for the �nite-di�erence method, hi represents the oil �lm thickness
at xi and the average oil �lm thickness between xi�1 and xi is given by (hi + hi�1)/2.

A mass balance during the time interval between t1 and t2 for the control volume
de�ned between xi and xi+1 is:

(�mcv)i + (

Z t2

t1

Fi+1=2dt�

Z t2

t1

Fi�1=2dt) = 0

where
R t2
t1
Fidt = (�o�xh1h2�t=2�o)i. Observe that the mass ux, Fi, is evaluated at the

cell volume midpoint, xi+1=2 � (xi + xi+1)=2. Thus, the value for (�x)i is actually the
value for the wall shear stress at xi+1=2.

We do not directly know the mass ux at the control faces (i.e., Fi+1=2), but rather
we know the state of the uid at the midpoint of the control volume (i.e., hi and Fi).
The mass ux at the control volume face is obtained by a second-order upwind biased
extrapolation.

Fi+1=2 = (3Fi � Fi�1)=2 (4:20)

A �rst-order ux limit relation is substituted to eliminate overshoots and oscillations
where @F=@x changes sign:

Fi+1=2 = Fi; if (Fi � Fi�1)(Fi�1 � Fi�2) < 0 (4:21)

For most nodes the ux limiter is not applied and the mass balance for node i becomes,
with rearrangement:
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Rearranging, we obtain the 1D Finite-Volume Upwind-Implicit interior node equation
(without Flux Limiter):
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For comparison purposes, the 1D Box-Implicit interior node equation (eq. 4.6) is:
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Numerical boundary conditions are developed similar to the Box-Implicit method, but
the boundaries occur at the node faces, rather than where the node value for h is known.
For example, for a leading edge at x = x0, hi=0 6� 0 since (x1 � x0)hi=0 represents the
oil volume contained in the control volume associated with the i = 0 node. Rather, the
leading edge condition implies that F

�1=2 � 0 for the control volume face located at x0.
Since, in the absence of surface tension, the partial di�erential equation is hyperbolic,

the ith node depends on only those nodes upwind (e.g., i � 1, etc., for Uc > 0) and the
nodes may be solved sequentially. Also, notice that the Finite-Volume Upwind-Implicit
method is mass conservative due to the consistent mass ux treatment at each face. The
method is second-order accurate in space, with a quasi-higher-order time variation treat-
ment. Further, the node equation 4.23 is consistent with the 1D time self-similar solution
for the case of constant �x.

A favorable comparison of results from the Finite-Volume Upwind-Implicit method
with results from the �nite-di�erence Box-Implicit method will be made in the application
section (Section 5) for a 1D test problem.

4.2 INVERSE NUMERICAL SOLUTIONS

Numerical techniques for the inverse solution of the 2D thin oil �lm partial di�erential
equation provide the basis for the experimental determination of the wall shear stress
distribution generated on a 2D surface by a 3D ow. Because the inverse method described
here is closely related to and derived from the Box-Implicit direct method described above,
a brief derivation is provided of the interior node equation and boundary conditions. In
the subsections below, we describe both a Two-Time-Level Box-Implicit inverse method
and a One-Time-Level Box-Implicit method. The Two-Time-Level method is useful for
experiments where su�cient optical access is available to view the test surface during the
experiment, while the One-Time-Level method is suited to those experiments where an
image of the oil �lm is acquired after the experimental wind tunnel run.
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Two-Time-Level Box-Implicit Inverse Method

To apply the numerical technique described here, the oil �lm thickness at two dis-
tinct times, h(x; z; t1) and h(x; z; t2), over the entire test surface region of interest is as-
sumed to be known from, for example, optical measurements1�4;8;9�11. Also required are
measurements9�11 of the surface streamline direction, (x; z), over the same region. The
aerodynamic ow over the surface is assumed to be steady between these two times. When
pressure gradient e�ects are important, it is necessary to know the wall pressures during
the same time interval, but the inclusion of pressure gradient, gravity or surface tension
e�ects does not alter the solution strategy.

In the context of understanding the solution of the 2D thin oil �lm equation for the
wall shear stress, �!� , equation 2.2 may be rewritten as:
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Where S is a source term absorbing all those terms of equation 2.2 which do not
contain the wall shear stress, � .

Next, apply a coordinate rotation as given in Appendix A (see eq. A.3) to equation
4.24 by the angle  from the (x; z) coordinate system to the (s; ~z) coordinate system aligned
locally with the wall shear stress:

@
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2�o
+
�h2
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@
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By examining equation 4.25, notice that we now have a �rst-order di�erential equation
for � that can be solved along the s-direction which lies aligned with the characteristic
direction, . The form of equation 4.25 emphasizes the hyperbolic nature of the thin
oil �lm equation when solving for � , and that the characteristic direction for the inverse
solver is given locally by , regardless of the nature of the source terms (including possible
pressure gradient, gravity or surface tension e�ects). In contrast, when equation 2.2 is
solved in the direct mode for h, inclusion of the pressure gradient and gravity terms can
signi�cantly a�ect the characteristic direction (Uc;Wc). Further, if surface tension terms
are included when solving in the direct mode for h, the nature of the equation changes
from hyperbolic to elliptic. The consistent hyperbolic (upwind) nature of the thin oil �lm
equation when solving for � enables the inverse solver to incorporate the pressure gradient,
gravity and surface tension e�ects in a more straightforward manner (without iteration)
than the direct solver.

Although a possible solution strategy would be to solve equation 4.25 along identi�able
surface streamlines, the approach here is to solve equation 2.2 on a 2D grid in a manner
related to the direct solver described earlier. Such an approach is easier to implement for
the general experimental case. A particular advantage to the chosen approach is that the
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di�culty alluded to in Appendix A of �nding the s-n coordinate system is thereby avoided.
Knowledge of , the surface streamline direction, allows us to de�ne the proper domain of
inuence, and, thus, which grid points are required to be included in the solution molecule.

The same solution molecule used to describe the interior node for the direct solver
is also used to describe the inverse solver (see �g. 4). The domain of inuence shown in
�gure 4 assumes 0 <  < �=2. A rectangular 2D grid is assumed, with even spacing of �x
and �z. Such a 2D array of grid points might, for example, correspond to the 2D pixel
arrangement for experimental data obtained from a series of digital camera images of a
thin oil �lm on the test surface.

The control volume analysis which leads to the Box-Implicit direct solver interior
node equation still applies for the Box-Implicit inverse solver. Thus, the interior node
equation which forms the basis of the 2D inverse thin oil �lm solver is a straightforward
rearrangement of the interior node equation for the Box-Implicit direct solver, equation
4.6:
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Although the size of the time step between the two images, (t2 � t1), may inuence
the accuracy of a solution, the stability of the inverse solver, which marches in space, is
not dependent on the time step size.

A more complete form of equation 4.26 may be derived by rearrangement of equation
4.7 (rather than eq. 4.6) so as to include the pressure gradient, gravity and/or surface
tension e�ects. The inverse solver, even with the inclusion of these terms, does not require
either global or node iteration, unlike the direct solver.

Boundary conditions for the inverse solver may be derived from related boundary con-
ditions for the direct solver, generally by rearrangement. For a leading edge, the boundary
condition for the inverse solver is analogous to equation 4.11:
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(4:27)

For a plane of symmetry, the boundary condition for the inverse solver is analogous
to equation 4.14:
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The inverse solver then solves on a node-by-node basis, starting with the boundary
nodes and then proceeding to each of the interior nodes as the information for each neigh-
boring upwind node becomes complete. For example, provided 0 <  < �=2, the nodes
would be swept according to the following simple row-column strategy:
a. For i = 1, and j = 0, advance the plane of symmetry/leading edge boundary node.
b. For i = 1, and j = 1; jmax, advance each node in the leading edge boundary.
c. For j = 0, and i = 2; imax, advance each node in the plane of symmetry boundary.
d. For an outer loop of i = 2; imax, and an inner loop of j = 1; jmax, advance each of the
interior nodes.

The rectangular 2D grid array described above is a somewhat limiting feature of
the present treatment of thin oil �lms. A more general grid mapping transformation of
irregularly spaced nodes located at (xi;j; zi;j) to evenly spaced coordinate system (�i;j; �i;j)
may be accomplished, but is not treated here.

One-Time-Level Box-Implicit Inverse Method

Optical access to the test surface may be limited during an actual wind tunnel run.
Thus, some researchers prefer to acquire a single image of the oil �lm taken immediately
at the �nish of the wind tunnel run. In this subsection, we derive an inversion method
suitable for analyzing such a One-Time-Level 2D oil �lm thickness distribution.

The wind tunnel is assumed to have run su�ciently long and the oil �lm is thin enough
that pressure gradient, gravity and surface tension e�ects are negligible. Further assume
the oil �lm distribution has achieved time self-similarity, where h(x; z; t) = H(x; z)=t.
Thus, we start our derivation with equation 3.3, rewritten here as:
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Wind tunnels seldom start immediately at the desired run conditions. Presumably,
the oil �lm is applied before the wind tunnel starts. Some initial time must occur to
establish the desired run condition, the tunnel then is held at the desired run conditions
for a period of time, and then the tunnel takes a small amount of time to shut down.
During the entire time of the oil ow, the wall shear stress varies, as does the dynamic
head, q1. Following the suggestion of Monson, Mateer, and Menter7;8, it seems best to
consider that Cf � �=q1 is likely to vary less during the time of the oil ow than will � .
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We, therefore, rewrite the 2D self-similar equation above as:
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where Cf � �=qnom, Cfx � Cf cos , Cfz � Cf sin , and qnom is the nominal or desired
wind tunnel dynamic head. The measured wind tunnel dynamic head during the wind
tunnel run varies and is given by q1(t). Additionally, the oil viscosity is temperature
sensitive and may vary during the wind tunnel run, which requires that the oil viscosity
variation with wind tunnel time be determined, �o(t). This can be done by measuring the
test surface temperature and then using a temperature calibration for the oil.

The derivation of equation 4.29 from equation 3.3 is not strictly rigorous in that we
integrate equation 3.3 over the time interval from ts to tf , and approximate the integral:
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Z tf

ts
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The di�culty with this is that the oil will not initially have been time self-similar, and
H = h=t will actually vary with time. For the purposes of this single time level scheme,
however, we consider this error source acceptable. The success of the overall method will
be considered in the applications section.

A One-Time-Level Box-Implicit numerical inverse equation form of equation 4.29 suit-
able for interior nodes may be derived in a manner similar to equation 4.26 which solves
the interior node for the Two-Time-Level numerical inverse scheme. The One-Time-Level
interior node equation is:

(Cf )i;j =f[hi;j + hi�1;j�1 + hi;j�1 + hi�1;j ]�

+ [(Cfh
2 cos )i�1;j�1 + (Cfh

2 cos )i�1;j � (Cfh
2 cos )i;j�1]=�x

+ [(Cfh
2 sin )i�1;j�1 + (Cfh

2 sin )i;j�1 � (Cfh
2 sin )i�1;j]=�zg

=[h2i;j(
cos 

�x
+
sin 

�z
)i;j ]

(4:30)

where � � 1=
R tf
ts

q1(t)=�o(t)dt. Further, because the oil �lm distribution for only one
time level is used, the time level subscript on h is dropped.

Leading edge and plane of symmetry numerical boundary conditions for the One-
Time-Level Box-Implicit method may be derived in a manner similar to that of equations
4.27 and 4.28.
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5. APPLICATIONS

An understanding of the behavior of thin viscous oil �lms can be achieved through
the study of selected 1D and 2D model problems. Selection of these model problems
is made so as to emphasize those physical, mathematical and numerical features which
might arise in considering the use of the methods described in this paper. The relative
inuence of wall shear stress, wall pressure, gravity, centrifugal and surface tension e�ects
can be determined. Comparison between numerical solutions, both direct and inverse, for
those 1D and 2D thin oil �lms for which closed form solutions can be found will reveal
the suitability of the numerical methods for more general problems. The accuracy of
approximate solution methods used by others in the analysis of experimental data can
be assessed. Demonstration of the rigor, accuracy, and ease-of-use of the mathematical
treatment of these thin oil �lms, as described here, tends to reinforce con�dence in the
continued development and expanding use of thin oil �lms in the important measurement
of wall shear stress. The utility of the direct and inverse solvers for practical applications
should become apparent from results of those cases presented.

Variable Wall Shear, 1D Case

The �rst problem considered is a simple 1D model problem where wall shear stress
varies linearly. For this problem, we assume the pressure gradient is either zero or negligi-
ble. Gravity and surface tension e�ects are also ignored. The solution is known from the
1D analytical relations and we may evaluate the accuracy of both the Box-Implicit direct
and inverse solvers for this case, as well as alternate solution methods which have been
used in other studies for analyzing experimental data.

Assume the wall shear stress varies as �(N=m2) = a + bx = 20 + 100x, where x is
in meters, with the leading edge of the thin oil �lm at x = 0 and the �lm extending to
x = 0:1 meter. Assume the oil �lm has a kinematic viscosity of �o = 100 centiStokes, with
a density of �o = 1000 Kg/m3. These properties are similar but not identical to commonly
used silicone oil. For the numerical solutions, assume an initial oil �lm thickness at t = 0
of h0 = 10 microns and a time step of dt = 0:1 second.

A closed form time self-similar solution can be obtained for this case using equation
3.7, the analytical relation for a 1D thin oil �lm:

H = ht = (�o=�)
1=2

Z x

x0

(�o=�)
1=2dx = 2

�o
b
(1�

1

(1 + bx=a)1=2
) (5:1)

Figure 7a shows the oil �lm thickness at several times (t = 0, 20, 40, 60, 80 and
100 seconds) from the analytical solution above, and from the 1D version of the Box-
Implicit direct solver. An evenly spaced grid of 100 points is used for the numerical solver.
The analytical solution assumes an in�nite initial �lm thickness. Some of the observed
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di�erences between the analytical and numerical solutions are due to this di�ering initial
condition. However, very good agreement (< 1%) between the analytical and numerical
solutions can be seen to occur for those regions and times where the oil �lm has reduced
in thickness to 3/4 or less than the initial thickness. We consider that the decrease in
di�erences between the numerical solution and the analytical solution appear to be more
closely associated with the decrease in the oil �lm thickness relative to the initial thickness
rather than with the increase in time. Clearly, however, the numerical solution approaches
the analytical time self-similar solution as the oil �lm thins.

Another observation from �gure 7a is that for \small" times a corner exists in the
oil �lm thickness distribution (e.g., x � 0:04m for t = 20 seconds). For larger times,
the corner has convected out of the solution domain. Note that by integration, for the
dh=dx = 0 region with � = a+ bx, of the 1D form of equation 3.1 for the time variation of
h, we obtain:

h = h0=(1 + h0bt=2�) (5:2)

A piecewise analytical solution can thus be formed for this problem with the smaller h
from equation 5.1 or 5.2 being selected. The observed corner occurs where equations 5.1
and 5.2 intersect, xc = (a=b)[(1 + h0bt=2�)

2 � 1].
For the Box-Implicit direct solver, an oscillation in the solution appears to originate

from this corner. This oscillation is numerical rather than physical. To solve this numerical
oscillation, a \Flux-Limit" concept is adapted to the Box-Implicit algorithm. For this
Flux-Limit concept to be applied, a �rst-order (rather than second-order) form of the
Box-Implicit algorithm is used for those nodes where the slope of the oil �lm thickness
changes sign. The solution from the Box-Implicit Flux-Limit algorithm is shown in �gure
7b. Examination of the solution in �gure 7b at, for example, t = 20 seconds shows that the
oil �lm slope changes sign at only two locations, meaning the �rst-order treatment at these
two nodes is su�cient to eliminate the corner oscillation. Clearly, the corner oscillation is
eliminated with excellent agreement otherwise.

Figure 7c shows the solution from the Finite-Volume Upwind-Implicit direct solver
algorithm. Although the solution appears to be somewhat better behaved than the Box-
Implicit direct solver, a corner oscillation still appears. A Flux-Limit form of the Finite-
Volume Upwind-Implicit algorithm eliminates this oscillation as is evident in the solution
given in �gure 7d.

An adaptation of the MacCormack22 explicit algorithm to the thin oil �lm problem
leads to the solution given in �gure 7e. The explicit algorithm is stable since the e�ective
stability index (CFL� Uc�t=�x � �h�t=2�o�x) for this problem is less than 1. No corner
oscillations occur, although slight di�erences (< 2%)in the oil �lm thickness distribution
for t = 20 and t = 40 seconds compared to the other numerical solutions are observed.

A further test of the numerical methods is to consider the accuracy of the inverse
solver. To accomplish this, we use the analytical oil �lm thickness for two times, t = 80
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and t = 100 seconds, as the known input to the inverse or � numerical solver. The
� vs x solution from the inverse solver can then be compared with the original known
� = 20 + 100x distribution. Figure 8a shows a � vs x distribution from the Box-Implicit
inverse solver. The comparison with the known result is excellent, within 1%. A further
test is to use the oil �lm thickness distribution from the Box-Implicit direct solver as the
input to the Box-Implicit inverse solver as shown in �gure 8b. Clearly demonstrated is the
accuracy of these methods for both direct and inverse solutions for this test case.

Shown in �gure 8c is the � vs x distributions derived by means of the One-Time-Level
Box-Implicit inverse algorithm from the Box-Implicit Flux-Limit direct solver's oil �lm
thickness at times t = 40 and t = 100 seconds. Agreement within 1% occurs except for
where the corner region of the t = 40 second Box-Implicit oil �lm thickness distribution has
not yet convected out of the region of interest. The One-Time-Level Box-Implicit inverse
algorithm requires the input oil �lm distribution to have become fully time self-similar
(H(x) � h(x; t)t =constant), which has not occurred as yet for the t = 40 second numerical
oil �lm distributions. A reasonable estimate for the time at which an oil �lm becomes fully
time self-similar is given by ts � L=Uc � L�=�h0. For this problem, L = 0:1 meter,
h0 = 10 microns and ts � 50 seconds. When the input oil �lm thickness distribution has
evolved to the point where it is time self-similar, the One-Time-Level Box-Implicit inverse
algorithm yields quite accurate results.

An alternate method of solving for � vs x that appears in the oil �lm literature is
based on the ad hoc assumption that the local wall shear stress is inversely related to the
local slope of the oil �lm height (only one time level is used):

� � (
�o
t
)=(

dh

dx
) (5:3)

Figure 8d presents the result of application of this local slope method to determine the
� vs x distribution from the analytical oil �lm thickness at t = 100 seconds. Comparison
with the known � = 20 + 100x distribution reveals obviously large errors (> 50% of the
rise in �) which result from the use of equation 5.3. These errors can be shown to arise
where d�=dx 6� 0. In particular, by rearrangement of equation 3.5:

� = [(
�o
t
)=(

dh

dx
)][1� (

ht

2�o
)
d�

dx
] (5:4)

The error in equation 5.3 is given by the (ht=2�o)d�=dx term. The increase in � of
10N=m2 over the region of the oil ow from x = 0 to x = 0:1m leads to an error of 6N=m2

or 60% for this algorithm. It is strongly recommended that the relation of equation 5.3 not
be used except for regions very close to the leading edge of the oil �lm (as was correctly
done by Monson, Mateer, and Menter7;8). Where the oil �lm is time self-similar and a
single image is available, the One-Time-Level Box-Implicit inverse algorithm described
earlier is recommended instead due to its ease-of-use and high accuracy.
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Constant Wall Shear, Increasing then Decreasing Film Thickness, 1D Case

A feature related to the nonlinearity of the thin oil �lm equation is explored with
the next problem. The study of the behavior and solution of nonlinear partial di�erential
equations (PDEs) invariably leads to Burgers' equation. A point to be made is that, where
� and �o are held constant, the simplest form of the 1D thin oil �lm equation is identical
to the inviscid form of the Burgers equation. Much of what has been learned from the
study of Burgers' equation about the behavior and solution of nonlinear PDEs directly
applies to the present thin oil �lm work. In turn, we realize that the study of the thin oil
�lm provides a quite practical and possibly interesting physical manifestation of Burgers'
equation. A certain irony exists in the realization that each oil ow study performed by
an experimentalist is also actually a Burgers' equation experiment.

One CFD problem area studied using Burgers' equation is the inviscid 1D (or normal)
shock. The present problem examines this shock-like behavior that can arise from the
nonlinear term, even for a thin oil �lm.

The 1D form of the thin oil �lm equation is given by:

@h

@t
+
@�h2=2�o

@x
= 0

An advantage of the thin oil �lm form is that we may form model problems where �
varies and even changes sign, allowing us to examine a greater range of uid physics. Such
a model problem is examined in the next subsection. For the particular model problem
under consideration, however, we assume that � = 25 N/m2, � = 1000Kg/m3, � = 100
centiStokes (e.g., � = 100 �10�6 m2/sec) and � = �� = 0:1Kg/m-sec and that these remain
constant.

First note that oil thickness, h, is being convected in the mean at a velocity, Uc =
�h=2�, which leads to the nonlinear h2 term in the PDE. The characteristic wave velocity,
found by expanding the @=@x term, is given by Uw = �h=�, which is also equal to the oil
velocity at the air/oil �lm interface at y = h.

Further assume for this current problem that the initial (t0 = 0) oil �lm thickness
increases linearly with x, followed by region of constant thickness, then decreases linearly
with x followed by another region of constant thickness according to:

h(t0 = 0) =10�5x=0:04; for x < xa = 0:04m

h(t0 = 0) =h0 � 10�5m; for xa = 0:04m < x < xb = 0:05m

h(t0 = 0) =10�5(3:5� x=0:02); for xb = 0:05m < x < xc = 0:068m

h(t0 = 0) =h1 � 10�6m; for x > xc = 0:068m

Figure 9a shows this initial (t0 = 0) oil �lm thickness distribution, as well as subse-
quent development of the oil �lm for times of t =4, 8, 12, 16 and 20 seconds. The corners
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initially at xa = 0:04m, xb = 0:05m and xc = 0:068m are also identi�ed in �gure 9a to aid
in describing the subsequent oil �lm development.

By means of characteristic and mass-conservation based arguments, the development
of the oil �lm thickness distribution with time can be established. Such piecewise analytical
solutions of the oil �lm provide a basis for comparison with numerical solutions, as well as
provide revealing insight into the shock-like behavior exhibited.

Consider the region between x0 = 0 and xa, where the oil �lm thickness increases
linearly with x. Note that the convective velocity also increases linearly in x and the �lm
tends to spread, leading to a decrease in the slope of the oil �lm thickness. Because the
region between x = 0 and xa is linear with constant � and �o, we know the 1D time
self-similar solution applies, where �h(t � 16) = �ox. Rearranging slightly, we �nd the
slope for this region is �h=�x = �o=�(t� 16). The corner at xa, where the linear region
intersects the h = h0 plateau, thus moves to the right at a constant wave velocity such
that:

xa(t)� xa(t0) = h0=(�h=�x) = (�h0=�o)(t� t0)

The wave velocity of the corner at xa is �h0=�o = 2:5mm/sec. Similarly, the corner
at xb is an artifact that moves at the constant wave velocity, �h0=�o = 2:5mm/sec. Also,
the corner at xc moves at the constant wave velocity, �h1=�o = 0:25mm/sec.

The plateau between xa and xb will retain constant oil �lm thickness since @h=@t �
�(�h=�)@h=@x � 0, with corners at xa(t) and xb(t) which appear to translate to the right
at a constant wave velocity of �h0=�.

In contrast, between xb and xc, the oil �lm thickness decreases linearly with x. Thus,
the wave velocity, �h=�o, also decreases in x. The corner at xb tends to catch up with
the slower moving corner at xc and the oil �lm thickness slope becomes steeper, until
a discrete jump of h0 � h1 occurs with xb(t) = xc(t). The discrete jump forms when
xb(t) = xc(t) = 0:07m at t=8 seconds.

Piecewise solutions for the oil �lm thickness at t = 4 and t = 8 seconds based on the
above arguments are given in �gure 9a.

For times past t = 8 seconds, the discrete jump moves with a wave velocity associated
with the average height of the jump, �(h0 + h1)=2�o = 1:375mm/sec. This wave velocity
can be determined by considering a small control volume of length, �x, with the jump
just entering. The jump is from a plateau of constant thickness, h0, to another plateau
of constant thickness, h1. Thus, the ow of oil into the control volume will occur at a
constant volumetric rate, �h20=2�o. The ow of oil out of the control volume also occurs at
a constant volumetric rate, �h21=2�o. The net rate of increase of oil volume in the control
volume will be �(h20 � h21)=2�o. However, the initial oil volume present as the jump just
enters the control volume is h1�x. The oil volume present as the jump just exits the
control volume is h0�x. The net change of the oil volume in the control volume as the
jump travels the distance �x is (h0 � h1)�x. The amount of time, then, for the jump to
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travel through the control volume is �t = ((h0�h1)�x)=(�(h
2
0�h

2
1)=2�o). Rearrangement

gives the wave speed of the jump:

Uj = �x=�t = �(h0 + h1)=2�o

The piecewise solution for the time t = 12 seconds, as shown in �gure 9a, results from
application of the above arguments.

When t = 15 3
11 seconds, the corner at xa will just catch up with the jump at xa =

xj = 78 2
11mm. Subsequently, the h0 plateau will no longer exist, and the average height

of the jump will decrease as the jump moves to the right, and the wave velocity of the
jump will also decrease. However, a consideration of the known time variation of the slope
of the linearly increasing region (x0 to xj), along with the known time variation of the
total oil volume, V = (0:431 � 0:0005t)10�6m2, in the domain (x = 0 to x = 0:1mm)
allows calculation of the jump movement and oil �lm thickness distribution past t = 15 3

11
seconds. The oil �lm thickness distributions for t = 16 and 20 seconds are also shown in
�gure 9a.

Precise knowledge of the piecewise analytical solution for this \shock-like" 1D model
problem allows for assessment of the accuracy of the Box-Implicit method and the Finite-
Volume Upwind-Implicit method for direct numerical solvers. These numerical solutions
are given in �gures 9b, 9c, 9d and 9e.

With the exception of the region about the shock-like jump, the Box-Implicit and
Finite-Volume Upwind-Implicit methods provide quite acceptable solutions. The jump
region, however, leads to large oscillations in the numerical solutions particularly for the
Box-Implicit method without the Flux-Limit treatment. For both the Box-Implicit and
Finite-Volume Upwind Implicit methods, the Flux-Limit treatment improves the solution
about the jump region, but with an apparent increase in jump wave velocity. This increase
in jump wave velocity is likely because the rather simple Flux-Limit treatment is not
mass-conservative as implemented.

Another criticism of the numerical solutions obtained is that the h0 plateau is not
preserved, becoming rounded at the xa and xb edges. Upwind methods are known to be
dissipative and this appears to be the reason, with the Box-Implicit method being better
behaved in this regard.

2D Surface Tension Bubble Problem

The next case considered is designed to demonstrate the inclusion of surface tension
terms. The primary focus of the present paper is on the response of an oil �lm to a
wall shear stress. However, in the vicinity of separation, the surface tension term can
dominate. Thus, it is desirable to demonstrate that the surface tension terms are correctly
implemented in the overall numerical procedure. To do this, we consider a problem where
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the oil �lm is subjected to only the surface tension term, and, furthermore, the problem is
designed so that features of the oil response are analytically known.

In constructing the present problem, we do not solve the surface tension problem in
general, but only demonstrate inclusion of the surface tension terms and also prepare for
the 3D separation problem of the next subsection. We consider here, then, the simpler
case where the oil �lm thickness varies only in the x direction.

Where only surface tension e�ects occur, and then only in the x direction, equation
2.2 becomes:

@h

@t
+

@

@x
f
h3

3�o
[
@

@x
(�hxx)]g = 0 (5:5)

Assume that oil is spread initially (t = 0) so as to assume the shape:

h(x; t = 0) = h0[1� (x=x0)
4]; for � x0 � x � x0 (5:6)

This initial bubble shape is not in equilibrium and the initial rate at which the bubble
changes shape is known by simple substitution of equation 5.6 into equation 5.5:

(
@h

@t
)t=0 = �

@

@x
f
h3

3�o
[
@

@x
(�hxx)]g

= 8
�h40
�ox40

[1� (x=x0)
4]2[1� 13(x=x0)

4]

(5:7)

The bubble shape continues to change with time until steady state is reached. The
steady state bubble shape will be given by:

h(x; t =1) = 1:2h0[1� (x=x0)
2]; for� x0 � x < x0 (5:8)

Note the steady state bubble shape given by equation 5.8 satis�es equation 5.5 with
@h=@t = 0, and also has the same oil volume as the initial bubble shape equation 5.6:

Z x0

�x0

hdx = 1:6h0x0

An accurate, mass-conservative numerical direct solution method given the initial
bubble shape of equation 5.6 should lead to the steady state bubble shape of equation 5.8
and have an initial rate of change of oil �lm thickness given by equation 5.7.

As can be seen from equation 5.5, the surface tension term is highly nonlinear (h3)
involving a fourth-order derivative in space. To implement the surface tension term into
the numerical solver, we choose here to use the linearized line-implicit method described
below. Although the method is incorporated in the current example program for nodes
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along the plane of symmetry as well as for purely interior nodes, we describe only the
interior node treatment here.

First, integrate equation 5.5 with time between times t1 and t2:

h2 � h1 +
@

@x
[(

�

3�o
)

Z t2

t1

h3hxxxdt] = 0 (5:9)

We linearize the h3hxxx term at t2 as:

(h3hxxx)2 � h31(h2)xxx + 3h21h2(h1)xxx � 3h31(h1)xxx

Substituting into equation 5.9:

h2 � h1 +
@

@x
[(
��t

6�o
)(h31(h2)xxx + 3h21h2(h1)xxx � 2h31(h1)xxx)] = 0 (5:10)

Now evaluate equation 5.10 at the midpoint, (i� 1=2):

h2;i � h1;i + h2;i�1 � h1;i�1 + (
��t

3�o�x
)

f[h31(h2)xxx + 3h21h2(h1)xxx � 2h31(h1)xxx]i

� [h31(h2)xxx + 3h21h2(h1)xxx � 2h31(h1)xxx]i�1g = 0

(5:11)

where �x = xi � xi�1.

The derivative, hxxx, may be found numerically by:

(hxxx)i = �ihi+2 + �ihi+1 + �ihi + ihi�1 + �ihi�2

where the coe�cients, (�, �, , � and �), are given in Appendix B.

Equation 5.10, with substitution and rearrangement, takes on the following matrix
form:

A2ih2;i�3 + A1ih2;i�2 +A0ih2;i�1 + B0ih2;i + C0ih2;i+1 + C1ih2;i+2 = D0i (5:12)

where
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C2i =0

C1i =(
��t

3�o�x
)(h31;i�i)

C0i =(
��t

3�o�x
)(h31;i�i � h31;i�1�i�1)

B0i =1 + (
��t

3�o�x
)[h31;i�i � h31;i�1�i�1

+ 3h21;i(�ih1;i+2 + �ih1;i+1 + �ih1;i + ih1;i�1 + �ih1;i�2)]

A0i =1 + (
��t

3�o�x
)[h31;ii � h31;i�1�i�1

� 3h21;i�1(�i�1h1;i+1 + �i�1h1;i + �i�1h1;i�1 + i�1h1;i�2 + �i�1h1;i�3)]

A1i =(
��t

3�o�x
)(h31;i�i � h31;i�1i�1)

A2i =� (
��t

3�o�x
)(h31;i�1�i�1)

D0i =h1;i + h1;i�1

+ 2h31;i(�ih1;i+2 + �ih1;i+1 + �ih1;i + ih1;i�1 + �ih1;i�2)

� 2h31;i�1(�i�1h1;i+1 + �i�1h1;i + �i�1h1;i�1 + i�1h1;i�2 + �i�1h1;i�3)

The matrix equation 5.12 is then solved by means of a scalar septa-diagonal solver
written for the present work. The scalar septa-diagonal solver is quite similar to commonly
used scalar tridiagonal solvers available, but is seven elements wide rather than only three.

The initial oil �lm thickness distribution for the model surface tension problem, equa-
tion 5.6 (with 100 centiStoke oil of 1.0 speci�c gravity and � = 21:010�3N/m, h0 = 10:0
microns and x0 = 0:1 meter) is shown in �gure 10. The known analytical steady state
oil �lm thickness distribution, equation 5.8, is also compared in �gure 10 with the present
steady state numerical results using the method described above. The excellent agree-
ment of the numerical and analytical steady state oil �lm thickness distribution is clearly
indicated.

Figure 11 shows the initial rate of change in the oil �lm thickness, (@h=@t)t=0, for the
model surface tension problem. Again the excellent agreement of the numerical results and
the known analytical form (eq. 5.7) of this feature is clearly indicated. Suggested by this
level of agreement for these features between the numerical result and the known analytical
forms is that the surface tension terms are correctly implemented into the present oil �lm
solver using the methods described in this subsection.
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Saddle on Plane of Symmetry, 2D Case

As a �nal example problem, the important practical case of a saddle located on a plane
of symmetry is next examined. Such a ow occurs, for example, in the region ahead of a
cylinder (or airfoil) mounted normal to a wall (or fuselage). Both a saddle of separation
and a saddle of attachment are considered. These saddle cases are calculated by the 3D
direct solver numerical methods described previously and are compared to the known closed
form solution, also described previously. The additional e�ects of wall pressure gradients
and surface tension for these saddle cases are also examined. This model problem is an
example of a highly 3D separated ow, and the ability of the numerical methods described
to accurately calculate this category of ows is a prime focus of the present study.

For both saddle cases, we assume the saddle (where both �x and �z equal zero) is
located at x = 0 and z = 0. The oil is applied initially (t = 0) as a thin �lm of h0 = 10
micron thickness with a leading edge located at x = �0:01 meter. The oil properties were
chosen to be nearly (but not identical to) those of silicone oil with a constant kinematic
viscosity of �o = 100 centiStokes, a density of �o = 1000 Kg/m3, and a surface tension of
� = 21 � 10�3N/m.

The wall shear stress is assumed to vary according to:

�x = ax; and �z = bz

For the saddle of separation case, a = �2000N/m3 and b = 1500N/m3.
For the saddle of attachment case, a = �2000N/m3 and b = 2500N/m3.

In the absence of surface tension and pressure gradient e�ects, a time self-similar
analytical solution is given by equation 3.21, repeated here:

h = Ht = (
2�ot

a+ b
)(1� (

x

x0
)
(a+b)
�2a ); for 0 < x < x0 (5:13)

Further, the shape of the surface streamlines (passing through the arbitrary point
(xs; zs)) are given from the analytical solution by equation 3.19 repeated here:

z

zs
= (

x

xs
)b=a = (

xs
x
)b=�a (5:14)

Figures 3a and 3b show the shape of the surface streamlines for the two saddle cases
presently considered.

Direct Solver, With and Without Surface Tension Terms

Numerical solutions for the oil �lm thickness distribution were obtained using the Box-
Implicit method for the two saddle cases, both with and without surface tension. Figure 12
shows the numerical solutions at a time of t = 100 seconds, both with and without surface
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tension. Also shown in �gure 12 is the comparable analytical solution (eq. 5.13) for each
case. Figure 13 is similar to �gure 12, but shows the region near the saddle point in more
detail. For this problem, the oil �lm thickness varies only with x and not z, even though
the shear �eld varies in (x,z). However, the numerical solution procedures are indeed fully
3D with h(x; z). Only the plane of symmetry solution is shown, but the z 6= 0 numerical
solutions prove to be identical as would be expected for this particular test problem.

The excellent agreement in �gures 12 and 13 between the analytical solution and the
numerical solution (without surface tension) gives a clear indication of the suitability of the
Box-Implicit numerical methods we have implemented in the present direct solver. Only
for the grid point located at x = 0 does a considerable di�erence between the analytical
and numerical thickness solutions exist. The analytical solutions for both a saddle of
separation and a saddle of attachment are cusped at x = 0. Furthermore, for a saddle of
separation, the cusp at x = 0 leads to an in�nite oil �lm thickness, h(x; 0)!1 as x! 0.
The numerical solutions have some di�culty in resolving this cusp for the last grid point
at x = 0. A further observation is that as the numerical grid becomes �ner (not shown),
the cusp in the numerical solutions at x = 0 becomes higher appearing to approach the
analytical result.

This sharp cusp, however, will not occur in a real oil �lm due to surface tension.
Therefore, the inability of the numerics to resolve the sharp in�nite cusp at x = 0 is of
little practical signi�cance. Also shown in �gure 13 are the numerical solutions for t = 100
seconds where surface tension is included using the line-implicit numerical procedures
described and tested in the previous (surface-tension-only) problem. As can be seen in
�gure 13, the surface tension removes the sharp cusp which otherwise appears in the
analytical and numerical solutions. Also, grid re�nement (not shown) of the numerical
solutions with surface tension no longer noticeably a�ects the oil �lm solutions obtained
in the region of x = 0.

Surface tension appears to more greatly a�ect the saddle of separation solutions than
the saddle of attachment solutions, due to the more pronounced cusp occurring for the
saddle of separation. From an order-of-magnitude analysis, the extent of domain a�ected
by surface tension can be approximated by:

L� = (
�h2

jaj
)1=4 (5:15)

For the present saddle of separation test case, L� � 110 microns, while for the present
saddle of attachment test case, L� � 80 microns. Based on �gure 13, the observed domain
actually a�ected by surface tension appears to be in the region of �x � 2L�.

The above calculations do not include pressure gradient e�ects. The pressure gradient
terms has an all but negligible inuence on the thin oil �lm solutions presented. According
to equation 3.18, the pressure gradient associated with a saddle characterized by �x = ax
and �z = bz, will have a magnitude of Px = �(3a+b)= tan �, where � � 30 deg is the angle of
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departure from the surface of the streamline originating from the saddle into the ow�eld.
An order-of-magnitude analysis, shows that the oil �lm peak will be displaced upstream
of the saddle by Lp � (3 + b=a)h0. For �gure 13, the oil �lm peak associated with the
saddle of separation would be displaced about Lp � 4h0 � 20 microns. This displacement
caused by the pressure gradient would be about 1 grid point upstream. For the saddle of
attachment shown in �gure 13, the oil �lm peak would be displaced upstream even less, by
Lp � 10 microns, or 1/2 grid point. In the absence of pressure gradient terms, the saddle
problem is symmetric in x as well as in z about the saddle. The surface tension terms are
easily incorporated for the symmetric problem. However, the pressure gradient terms lead
to a nonsymmetric (in x) saddle problem. Because the e�ect of pressure gradient on the
oil �lm is so small for these thin oil �lms, the pressure gradient terms were not included
in the calculations for the oil �lm at this time.

In the remaining portion of this saddle ow subsection, we use the above direct solu-
tions in lieu of experimental data to explore several techniques for analysis of experimental
oil �lm data. The context of the present study suggests three approaches. The �rst and
simplest experimental thin oil �lm analysis in the vicinity of a saddle is to examine the
surface streamlines for a rough estimate of b=a, thereby determining whether the saddle
is a saddle of separation or a saddle of attachment. A second analysis is to examine the
oil �lm thickness, h vs x=x0, along the centerline, z = 0, for estimates of the ratio of the
shear gradients, b=a, and, again, whether the saddle is a saddle of separation or a saddle
of attachment. However, the third and most thorough experimental thin oil �lm analysis
of a saddle is to measure the thin oil �lm distribution h(x; z), at one or more times, along
with a surface streamline measurement, (x; z), and then use an inverse solver, such as
described earlier in this paper, to deduce the complete wall shear �eld, (�x(x; z); �z(x; z)),
in the vicinity of the saddle.

Placement of a pattern of oil dots or other conventional surface oil ow visualization
techniques in the vicinity of a saddle point is straightforward and will result in an image
similar to �gure 3a or 3b. From �gure 3a or 3b, for each selected surface streamline, s,
we may identify an arbitrary point (xs; zs) through which that streamline passes. Other
arbitrary points (xi; zi) which lay on the same streamline may then be tabulated. In the
vicinity of the saddle, the streamline coordinates will behave according to equation 3.19,
rewritten here in logarithmic form as:

log(
z

zs
) = (b=a) log(

x

xs
) (5:16)

A log-log plot of (z=zs) vs (x=xs) for the saddle cases solved above is shown in �gure
14. Note that all the streamlines for each saddle case fall on one line associated with
the b=a ratio for that case. The several saddle cases are clearly distinguishable in �gure
14, providing estimates of b=a and identifying which case is a saddle of separation or
attachment. On a plot such as �gure 14, each quadrant is associated with either saddles of
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separation or with saddles of attachment but not both. The simplicity of this streamline
analysis approach is compelling. Anticipated experimental complications not evident in
this brief example include the fact that in general the sepratrix emanating from the saddle
will typically be curved rather than straight.

Figure 15 explores the utility of a plot of h vs log10(x=x0), as mentioned in the section
on analytical solutions (Section 3). In �gure 15, x is the distance from the saddle along
the plane of symmetry, x0 is the distance to the leading edge of the applied oil, and h is
the oil �lm thickness.

The ability to determine experimentally whether a given saddle is a saddle of sepa-
ration or a saddle of attachment may prove desirable. We also may wish to estimate the
ratio of the shear stress gradients, b=a. Figure 15 demonstrates how this might be done.
Consider, in particular, the line shown in �gure 15, which represents the special case where
a + b = 0. This is a saddle which is intermediate between a saddle of separation and a
saddle of attachment. For the case where a + b = 0, a plot of h vs log10(x=x0) will be a
straight line, as indicated by the analytical solution given by equation 3.23 repeated here:

ht = H = (��o=a) ln(x0=x); for x < x0; a < 0; and a+ b = 0 (5:17)

For a saddle of separation, a+b < 0, a plot of h vs log10(x=x0) will curve upward from
the straight line as shown in �gure 15, even with the e�ect of surface tension included.

For a saddle of attachment, a+ b > 0, a plot of h vs log10(x=x0) will curve downward
from the straight line as shown in �gure 15, again even with the e�ect of surface tension
included. Clearly from �gure 15, to use a log plot to unambiguously distinguish between a
saddle of separation and a saddle of attachment, oil �lm thickness data must be obtained
quite close to the saddle (x < 0:03x0).

Inverse Solver, With and Without Surface Tension Terms

An important aim of the present work was the development and validation of a 2D thin
oil solver suitable for determining the 2D wall shear stress �eld on the surface bounding a
complex 3D ow. To test, in this subsection, the inverse solver methods described earlier
in this paper, we use the oil �lm thickness distributions obtained above by our direct
solver for the 3D saddle of separation as the input to the inverse solver. A �rst oil �lm
height distribution input case is considered where surface tension e�ects are not included
in the direct solver, and then a second oil �lm height distribution input case where surface
tension e�ects are included in the direct solver. Both the Two-Time-Level (eq. 4.26) and
the One-Time-Level (eq. 4.30) versions of inverse solver algorithm are considered. Surface
tension terms may also be explicitly added to the inverse Two-Time-Level solver algorithm
and are also considered.

Figure 16a and 16b show the �x(N=m
2) = �2000x(m) and the �z(N=m

2) = 1500z(m)
distributions, respectively, for the saddle of separation problem being considered. The
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oil �lm distribution for this case was obtained using the direct solver without the surface
tension terms (also see �g. 12) and was then used as the input to both the One-Time-Level
and the Two-Time-Level (without surface tension) inverse solvers. For the Two-Time-Level
solver, oil �lm distributions at t = 75 and t = 100 seconds were used, while for the One-
Time-Level inverse solver, only the oil �lm distribution at t = 100 seconds was used. The
wall shear stress distributions obtained by the inverse solvers are also shown in �gures 16a
and 16b. Note that uneven spacing in z was used to demonstrate the ability of both the
direct and inverse solvers to deal with uneven grid spacing and also so as to better resolve
the immediate vicinity of the saddle. Figure 16c shows the �x vs x results in the vicinity of
the saddle to a �ner scale than that of �gure 16a. From the earlier discussion of the direct
solver, we know the oil �lm distribution in the absence of surface tension agrees quite well
with the analytical solution for this case. Figures 16a-16c clearly indicate that the inverse
solver, both the One-Time-Level and the Two-Time-Level algorithms, also performs nearly
ideally, in the absence of surface tension, in calculation of the 2D wall shear stress �eld
about a saddle of separation.

Surface tension e�ects do occur about a saddle of separation in an actual experimental
setting. Thus, to examine the ability of the present inverse solver to deal with surface
tension e�ects, we also consider the case where the input oil �lm thickness distribution
was produced using the direct solver which included surface tension e�ects (see also the
discussion of �g. 13). The ability of the direct solver to correctly incorporate surface
tension e�ects was previously validated in the discussion of the surface tension bubble
problem earlier in this section.

Figures 17a and 17b are wall shear stress results, �x vs x and �z vs x, respectively,
for the inverse solvers without surface tension terms in the inverse algorithm. Unlike
the results in �gures 16a-16c, however, the input oil �lm distribution for �gures 17a and
17b does include surface tension e�ects. Some error in the wall shear stress �x appears
in the immediate vicinity of the saddle of separation as a result of introducing surface
tension e�ects into the oil �lm thickness distribution; however, errors in �z close to the
saddle become quite large. The surface-tension-induced errors are limited to a region of
�x � 2L� about the saddle. In spite of the errors we observe, both the One-Time-Level
and the Two-Time-Level inverse algorithms provide nearly identical results.

Next, we add surface tension terms to the inverse Two-Time-Level solver to determine
if these surface-tension-induced errors can be removed. Since the One-Time-Level inverse
solver algorithm relies exclusively on the time self-similar relation h � H=t, which is not
valid for the surface tension term, the One-Time-Level inverse algorithm cannot be easily
corrected for surface tension.

Figure 18a and 18b are the wall shear stress results, �x vs x and �z vs x, respectively,
for the Two-Time-Level inverse solver with surface tension terms added. Note that the
surface-tension-induced errors close to the saddle of separation are still present but are
smaller than those of �gures 17a and 17b. To improve the accuracy for large time steps, an
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assumption that h � 1=t was incorporated into the derivation of both the direct solver and
the inverse solver algorithms. Where the wall shear stress terms dominate, this assumption
aids accuracy considerably. However, where surface tension terms become dominant, large
time steps are not as accurately accomplished with this assumption. The direct solver
results are obtained with a time step of �t = 0:1 second. The inverse solver algorithm
is designed for use with experimental data having large time steps between images and is
tested here with a time step of �t = 25 seconds.

We have in this subsection demonstrated that the direct solver provides an excellent
representation of the oil �lm thickness distribution about a saddle of separation or a saddle
of attachment even to the extent of including surface tension e�ects in the vicinity of the
saddle. Surface tension is found to inuence only a quite limited region in the immediate
vicinity of the saddle (�x = 2L� � 200 microns). The One-Time-Level and Two-Time-
Level inverse solver algorithms have also been demonstrated to provide accurate wall shear
stress distributions for the saddle of separation case, except for this limited surface-tension-
dominated region.
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6. CONCLUDING REMARKS

The ow of a thin �lm of oil placed on a surface and then subjected to the 2D wall
shear stress generated by a 3D aerodynamic ow is extensively considered. The governing
partial di�erential equation is derived to include the e�ect of a wall shear stress and wall
pressure gradient on the thin �lm of oil. Surface tension and gravity terms are included.
We refer to the resultant partial di�erential equation as the \Thin Oil Film Equation."
The \Squire form" and the \Tanner form" of the thin oil �lm equation are shown, in
Appendix A, to be equivalent through a metric transformation. Numerous analytical time
self-similar solutions for the thin oil �lm equation are described. Of particular interest is
the ow of a thin oil �lm in the vicinity of 3D aerodynamic surface streamline singularities
such as the saddle of separation and the saddle of attachment.

Another result of this study is that both direct and inverse numerical solution tech-
niques are developed. In addition to the wall shear stress terms, these direct and inverse
solution techniques may additionally include the e�ects of the wall pressure gradient, grav-
ity and surface tension terms. A Two-Time-Level inverse solver is described which includes
these e�ects. A One-Time-Level version of the inverse solver is for use in the absence of
the wall pressure gradient and surface tension terms. When the oil �lm thickness varia-
tions are provided from experimental images of the oil �lm, the inverse methods provide
a rigorous mathematical basis for an improved form of the oil �lm based wall-shear-stress
instrument.

The numerical solvers are applied to several model problems having known analytical
solutions so as to evaluate the fundamental accuracy of these numerical methods. Both the
direct and inverse numerical solvers are shown to be stable, accurate and computationally
e�cient. One alternate � vs x solution method based on the local slope of the �lm thickness
sometimes suggested elsewhere for oil �lm based wall-shear-stress instrumentation is shown
to have fundamental accuracy problems leading to, in one example considered, errors of
50% or more. A model surface tension problem with an analytical solution is also derived
to demonstrate the ability of the present solvers to correctly implement the surface tension
terms, which can become important near separation.

An extensive application of the direct and inverse numerical solvers to the case where
oil �lm ows on the surface in the vicinity of a saddle of separation provides a clear demon-
stration of the success and utility of these numerical methods. The saddle of attachment
case is also successfully treated.

Techniques for the rigorous analysis of the behavior of thin oil �lms on test surfaces
bounding complex 3D aerodynamic ows have been demonstrated. Instrumentation for
the measurement of the 2D wall shear stress which use these numerical techniques should
be accurate and suitable for use in complex 3D aerodynamic ows.

47



REFERENCES

1. Tanner, L. H.; and Blows, L. G.: A Study of the Motion of Oil Films on Surfaces
in Air Flow, with Application to the Measurement of Skin Friction. J. Physics E:
Scienti�c Instruments, vol. 9, no. 3, 1976, pp. 194-202.

2. Tanner, L. H.: A Skin Friction Meter, Using the Viscosity Balance Principle, Suitable
for Use with Flat or Curved Metal Surfaces. J. Physics E: Scienti�c Instruments, vol.
10, no. 3, 1977, pp. 278-284.

3. Tanner, L. H.; and Kulkarni, V. G.: The Viscosity Balance Method of Skin Friction
Measurement: Further Developments including Applications to Three-Dimensional
Flow. J. Physics E: Scienti�c Instruments, vol. 9, no. 12, 1976, pp. 1114-1121.

4. Tanner, L. H.: Surface Flow Visualization and Measurement by Oil Film Interferome-
try. Proc. 2nd Intl. Symp. on Flow Visualization, Sept. 1980, Bochum W. Germany,
Ed. Merzkirch, Hemisphere Publishing Co., NY, 1980, pp. 613-617.

5. Monson, D. J.: A Nonintrusive Laser Interferometer Method for Measurement of Skin
Friction. Exp. Fluids, vol. 1, no. 1, 1983, pp. 15-22.

6. Monson, D. J.: A Laser Interferometer for Measuring Skin Friction in Three Dimen-
sional Flows. AIAA J., vol. 22, April 1984, pp. 557-559.

7. Monson, D. J.; Mateer, G. G.; and Menter, F. R.: Boundary-Layer Transition and
Global Skin Friction Measurement with an Oil-Fringe Imaging Technique. SAE Paper
932550, Aerotech 93, Costa Mesa, CA, Sept. 1993.

8. Mateer, G. G.; Monson, D. J.; and Menter, F. R.: Skin-Friction Measurements and
Calculations on a Lifting Airfoil. AIAA J., vol. 34, no. 2, Feb. 1996, pp 231-236.

9. Naughton, Jonathan W.; and Brown, James L.: Surface Interferometric Skin-Friction
Measurement Technique. AIAA Paper 96-2183, 19th AIAA Advanced Measurement
and Ground Testing Conference, New Orleans, LA, June 1996.

10. Naughton, Jonathan W.; and Brown, James L.: Uncertainty Analysis for Oil-Film
Interferometry Skin-Friction Measurement Techniques. ASME Paper FEDSM 97-
3475, 1997 ASME Fluids Engineering Division Summer Meeting, FEDSM97, June
22-26, 1997.

11. Naughton, Jonathan W.; and Brown, James L.: Skin Friction Distribution Near a
Cylinder Mounted on a Flat Plate. AIAA Paper 97-1783, 28th AIAA Fluid Dynamics
Conference, Snowmass Village, CO, June 1997.

12. Maltby, R. L., ed.: Flow Visualization in Wind Tunnels Using Indicators. AGARDo-
graph 70, April 1962.

13. Tobak, Murray; and Peake, David J.: Topology of 3D Separated Flows. Annual
Review of Fluid Mechanics, vol. 14, 1982, pp. 61-85.

14. Chapman, G. T.; and Yates, L. T.: Topology of Flow Separation on Three Dimensional
Bodies. Applied Mechanics Reviews, vol. 44, no. 7, July 1991, pp 329-345.

15. Squire, L. C.: The Motion of a Thin Oil Sheet Under the Boundary Layer on a Body.
J. Fluid Mech., vol. 11, part 2, Sept. 1961, pp. 161-179; also see Flow Visualization

48



in Wind Tunnels Using Indicators. Compiled by R. L. Maltby, AGARDograph 70,
April 1962, pp. 7-23.

16. Burgers, J. M.: A Mathematical Model Illustrating the Theory of Turbulence. In
Advances in Applied Mechanics, R. von Mises and Th. von Karman, eds., vol. 1,
1948, pp. 171-199.

17. Homann, F.: Der Einuss grosser Z�ahigkeit bei der Str�omung um den Zylinder und
um die Kugel. Z. Angew. Math. Mech., Vol. 16 (1936), pp. 153 and Forsch. Gebiete
Ingenieurow., Vol. 7 (1936): English translation, The E�ect of High Viscosity on the
Flow around a Cylinder and around a Sphere. NACA TM-1334, Washington, D.C.
(1952).

18. White, F. M.: Viscous Fluid Flow. McGraw-Hill, New York, 1974.
19. Churchill, S. W.: Viscous Flows: The Practical Use of Theory. Butterworths, Boston,

1988.
20. Perry, A. E.; and Fairlie, B. D.: Critical Points in Flow Patterns. Advances in Geo-

physics, vol. 18B, 1974, pp. 229-315.
21. Hung, C.-M.; Sung, C.-H.; and Chen, C.-L.: Computation of Saddle Point of Attach-

ment. AIAA J., vol. 30, no. 6, June 1992, pp. 1561-1569.
22. MacCormack, R. W.: The E�ect of Viscosity in Hypervelocity Impact Cratering.

AIAA Paper 69-354, 1969.

49



APPENDIX A

The Equivalence of the Tanner Form and the Squire Form

of the Thin Oil Film Equation

In this appendix, we show that the 2D thin oil �lm equation of the form as given
by Squire (see eq. 2.2) and of the form as given by Tanner (eq. A.6 derived below)
are equivalent and may be derived from each other by means of a metric transformation.
Understanding of the details of this transformation is useful in the construction of boundary
conditions. The Tanner form of the thin oil �lm equation can be useful in formulation of
certain types of boundary conditions, whereas the Squire form of the thin oil �lm equation
is more compatible with current computational uid dynamics numerical procedures.

Consider that the test surface covered by an oil �lm may be described by a cartesian
x-z coordinate system or by an s-n coordinate system attached to the surface streamlines
as depicted in �gure A1. Thus, n is constant for a given surface streamline, and s is the
distance along the surface streamline. The local transformation between these two coordi-
nate systems is accomplished by �rst a rotation ((x; z)) (~x; ~z)) by the local shear stress
angle, , followed by a stretching dn = �d~z to account for the divergence (or convergence)
of the surface streamlines. Note the stretching function, �, varies with position on the test
surface.

Clearly,

ds =
@s

@x
dx+

@s

@z
dz =cos dx+ sin dz

dn =
@n

@x
dx+

@n

@z
dz =� � sin dx+ � cos dz

Inversion of the transformation matrix above gives:

dx =
@x

@s
ds+

@x

@n
dn =cos ds� (sin =�)dn

dz =
@z

@s
ds+

@z

@n
dn =sin ds+ (cos =�)dn

Further, transformation of partial derivatives between these two coordinate systems
may be locally accomplished by:

@

@x
=
@s

@x

@

@s
+
@n

@x

@

@n
@

@z
=
@s

@z

@

@s
+
@n

@z

@

@n

and

50



@

@s
=
@x

@s

@

@x
+
@z

@s

@

@z
@

@n
=
@x

@n

@

@x
+

@z

@n

@

@z

In the x-z coordinate system, consider the thin oil �lm equation of the form given by
Squire (restricted to wall shear stress e�ects):

@h

@t
+

@

@x
(
�xh

2

2�o
) +

@

@z
(
�zh

2

2�o
) = 0 (A:1)

To transform to the s-n coordinate system for the form given by Tanner, we �rst
expand:

@

@x
(
�xh

2

2�o
) +

@

@z
(
�zh

2

2�o
) =� cos 

@h2=2�o
@x

+ � sin 
@h2=2�o

@z

+ (h2=2�o)(
@� cos 

@x
+
@� sin 

@z
)

Next, apply the coordinate transformation:

@

@x
(
�xh

2

2�o
) +

@

@z
(
�zh

2

2�o
) =� cos (cos 

@h2=2�o
@s

� � sin 
@h2=2�o

@n
)

+ � sin (sin 
@h2=2�o

@s
+ � cos 

@h2=2�o
@n

)

+ (h2=2�o)(cos 
@� cos 

@s
� � sin 

@� cos 

@n

+ sin 
@� sin 

@s
+ � cos 

@� sin 

@n
)

Now, contract the left hand side (mostly, cos2+sin2 = 1), and rearrange giving:

@

@x
(
�xh

2

2�o
) +

@

@z
(
�zh

2

2�o
) =

@

@s
(
�h2

2�o
) + (�h2=2�o)�

@

@n

which then leads to the s-n form for the 2D thin oil �lm equation:

@h

@t
+
@�h2=2�o

@s
+ (�h2=2�o)�

@

@n
= 0 (A:2)

Note that in analyzing surface streamline images, � would seldom actually be estab-
lished since the stretching, �, distorts angles, and the rotated coordinate, ~z, would be used
locally rather than n. Thus, the substitution into the above equation of @=@~z = �@=@n
would be appropriate, particularly in the formulation of numerical boundary conditions:
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@h

@t
+
@�h2=2�o

@s
+ (�h2=2�o)

@

@~z
= 0 (A:3)

To proceed toward Tanner's form of the 2D thin oil �lm equation, consider �gure A2
which seeks to relate the streamline divergence term used by Tanner (note Tanner uses
the symbol n rather than �) to the shear stress angle  used in this paper. In �gure A2,
two surface streamlines are initially separated by a small distance, �n = �(s; n)�. Note,
�n is given in term of the stretched coordinate, n, whereas � is given in terms of the local
unstretched coordinate, ~z. Thus, the angle formed between the two streamlines is given by
� = (@=@~z)�. A small distance, �s, along the streamlines the separation will increase
by �� = (@=@~z)��s. In the limit of small � and �s, we obtain the relationship:

(
1

�
)
@�

@s
=

@

@~z
= �

@

@n
(A:4)

Substituting this relation into equation A.2 we obtain:

@h

@t
+
@�h2=2�o

@s
+ (�h2=2�o)(

1

�
)
@�

@s
= 0 (A:5)

Rearranging, we obtain Tanner's form for the 2D thin oil �lm equation:

@h

@t
+ (

1

�
)
@��h2=2�o

@s
= 0 (A:6)

Note, � can be obtained by integrating equation A.4 along a surface streamline (the
choice for �0 at s0 can be arbitrarily small):

� = �0e
(
R
s

s0
@=@~zds)

(A:7)

Thus, the two streamlines initially some small distance apart, �0, at s0 will be separated
by � at s. But, in terms of the n coordinate, the separation, �n, is �xed:

�n = �(s; n)�(s; n) = constant

which leads to:

� = �0e
�(
R
s

s0
@=@~zds)

(A:8)

Equation A.8 does give us the means to analyze a surface streamline image, with
known (x; z), for the stretching function, �(x; z), and known rotation function, (x; z),
required to establish the s-n coordinate system if so desired.

The demonstration presented here that Tanner's form and Squire's form of the 2D thin
oil �lm di�er only in the coordinate system reveals the details of the required coordinate
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system transformation. These details should prove useful in correctly formulating general
boundary conditions.
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APPENDIX B

Numerical Forms for @3h=@x3

A centered numerical approximation to the partial derivative, @3h=@x3, may be found
on an unevenly spaced grid (xi�2,xi�1,xi,xi+1,xi+2) by:

(@3h=@x3)i = �ihi+2 + �ihi+1 + �ihi + ihi�1 + �ihi�2

�i =
�6(xi+1 + xi�1 + xi�2 � 3xi)

(xi+2 � xi)(xi+2 � xi+1)(xi+2 � xi�1)(xi+2 � xi�2)

�i =
6(xi+2 + xi�1 + xi�2 � 3xi)

(xi+1 � xi)(xi+2 � xi+1)(xi+1 � xi�1)(xi+1 � xi�2)

i =
6(xi+2 + xi+1 + xi�2 � 3xi)

(xi�1 � xi)(xi+2 � xi�1)(xi�1 � xi+1)(xi�1 � xi�2)

�i =
6(xi+2 + xi+1 + xi�1 � 3xi)

(xi�2 � xi)(xi+2 � xi�2)(xi�2 � xi+1)(xi�2 � xi�1)

�i =� (�i + �i + i + �i)

A biased numerical approximation to the partial derivative @3h=@x3, may be found
on an unevenly spaced grid (xi�1,xi,xi+1,xi+2,xi+3) by:

(@3h=@x3)i = �ihi+3 + �ihi+2 + ihi+1 + �ihi + �ihi�1

�i =
�6(xi+2 + xi+1 + xi�1 � 3xi)

(xi+3 � xi)(xi+3 � xi+2)(xi+3 � xi+1)(xi+3 � xi�1)

�i =
6(xi+3 + xi+1 + xi�1 � 3xi)

(xi+2 � xi)(xi+3 � xi+2)(xi+2 � xi+1)(xi+2 � xi�1)

i =
6(xi+3 + xi+2 + xi�1 � 3xi)

(xi+1 � xi)(xi+3 � xi+1)(xi+1 � xi+2)(xi+1 � xi�1)

�i =
6(xi+3 + xi+2 + xi+1 � 3xi)

(xi�1 � xi)(xi+3 � xi�1)(xi�1 � xi+2)(xi�1 � xi+1)

�i =� (�i + �i + i + �i)
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Figure 1. The thin oil film on a test surface.
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Figure 2a. Saddle of attachment surface and plane of symmetry flowfield streamlines.
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Figure 2b. Saddle of separation surface and plane of symmetry flowfield streamlines.
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Figure 3a. Saddle of attachment surface streamlines.
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Figure 3b. Saddle of separation surface streamlines.
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Figure 3c. Node of attachment surface streamlines.
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Figure 3d. Node of separation surface streamlines.
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Figure 4. Box-Implicit solution molecule.
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Figure 5. Thin oil film leading edge.
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Figure 6. Control volume for Finite-Volume algorithm.
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 Figure 7a. Oil film thickness from Box-Implicit direct solver
 (symbols) compared to analytical solution (lines) for
 linear wall shear stress (= 20 + 100 x) case.

X, meters

h,
 m

ic
ro

ns

0.0 0.1
0.0

15.0
Equation 5.1
Equation 5.2

t = 0

t = 20

t = 40

t = 60

t = 80

t =100



 Figure 7b. Oil film thickness from Box-Implicit Flux-Limit direct
 solver (symbols) compared to analytical solution (lines)
 for linear wall shear stress (= 20 + 100 x) case.

X, meters

h,
 m

ic
ro

ns

0.0 0.1
0.0

15.0
Equation 5.1
Equation 5.2

t = 0

t = 20

t = 40

t = 60

t = 80

t =100



 Figure 7c. Oil film thickness from Finite-Volume Upwind-Implicit
 direct solver (symbols) compared to analytical solution
 (lines) for linear wall shear stress (= 20 + 100 x) case.
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 Figure 7d. Oil film thickness from Finite-Volume Upwind-Implicit
 Flux-Limit direct solver (symbols) compared to 
 analytical solution (lines) for linear wall shear stress
 (= 20 + 100 x) case.
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 Figure 7e. Oil film thickness from McCormack direct solver
 (symbols) compared to analytical solution (lines) for
 linear wall shear stress (= 20 + 100 x) case.
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 Figure 8a. Wall shear stress from Box-Implicit inverse solver.
 Analytical oil film thickness at t=80 and 100
 seconds used as input to inverse solver.
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 Figure 8b. Wall shear stress from Box-Implicit inverse solver.
 Oil film thickness at t=80 and 100 seconds from
 Box-Implicit direct solver used as input to inverse solver.
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 Figure 8c. Wall shear stress from One-Time-Level Box-Implicit
 inverse solver.  Box-Implicit direct solver oil film
 thickness at t=40 and 100 seconds as inverse solver input.
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 Figure 8d. Wall shear stress from local-slope method.
 Analytical oil film thickness at t=100 seconds used
 as input to local-slope method.
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 Figure 9a. Analytical oil film thickness at discrete times
 (t= 0, 4, 8, 12, 16 and 20 seconds) for constant wall
 shear stress, non-monotonic initial thickness problem.
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 Figure 9b. Box-Implicit direct solver oil film thickness
 at discrete times for constant wall shear stress, 
 non-monotonic initial thickness problem.
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 Figure 9c. Box-Implicit, Flux-Limit direct solver oil film
 thickness at discrete times for constant wall
 shear stress, non-monotonic initial thickness problem.
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 Figure 9d. Finite-Volume Upwind-Implicit direct solver oil film
 thickness at discrete times for constant wall shear
 stress, non-monotonic initial thickness problem.
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 Figure 9e.  Finite-Volume Upwind-Implicit, Flux-Limit direct solver
 oil film thickness at discrete times for constant wall
 shear stress, non-monotonic initial thickness problem.
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 Figure 10. Initial and final oil film thickness, surface tension problem.
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 Figure 11. Initial oil film thickness rate, surface tension problem.
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Figure 12. Oil film thickness for saddle problem, Box-Implicit
method, t=100 seconds.
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Figure 13. Oil film thickness for detailed region near saddle
point of saddle problem, Box-Implicit method,
t=100 seconds.

X, meters

h,
 m

ic
ro

ns

-0.001 0.0
0.0

5.0

Saddle of Separation:
Analytical Solution, no surface tension
Direct Solver, no surface tension
Direct Solver with surface tension

Saddle of Attachment:
Analytical Solution, no surface tension
Direct Solver, no surface tension
Direct Solver with surface tension



Figure 14. Log quadrant analysis of saddle streamlines.
Square symbols form figure 3a, a saddle of attachment.
Circle symbols form figure 3b, a saddle of separation.
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 Figure 15. Centerline log analysis for saddle oil film thickness.
 Saddle of separation without surface tension terms.
 Saddle of separation with surface tension terms.
 Saddle of attachment without surface tension terms.
 Saddle of attachment with surface tension terms.
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 Figure 16a. Oil film wall shear stress for saddle problem using
 Two- and One-Time-Level inverse solvers,
 no surface tension.
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 Figure 16b. Oil film wall shear stress for saddle problem using
 Two-Time-Level inverse solver, no surface tension.
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 Figure 16c. Oil film wall shear stress for detailed region near
 saddle point using Two- and One-Time-Level
 inverse solvers, no surface tension.
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 Figure 17a. Wall shear stress for saddle problem with surface 
 tension effects using Two- and One-Time-Level
 inverse solver without surface tension terms.

X, meters

τ x
, N

/m
2

-0.001 0.0
0.0

2.0

τx=-2000x
Two-Time-Level inverse solver:

Z = 0
Z = 0.005
Z = 0.01

One-Time-Level inverse solver:

Z = 0
Z = 0.005
Z = 0.01



 Figure 17b. Wall shear stress for saddle problem with surface 
 tension effects using Two- and One-Time-Level
 inverse solver without surface tension terms.
 Open symbols are Two-Time-Level inverse solver results.
 Filled symbols are One-Time-Level inverse solver results.
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 Figure 18a. Wall shear stress for saddle problem with 
 surface tension effects using Two-Time-Level
 inverse solver with surface tension terms.

X, meters

τ x
, N

/m
2

-0.001 0.0
0.0

2.0

τx=-2000x
Two-Time-Level inverse solver:

Z = 0
Z = 0.005
Z = 0.01



 Figure 18b. Wall shear stress for saddle problem with
 surface tension effects using Two-Time-Level
 inverse solver with surface tension terms.
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Figure A1. Streamline coordinate system.
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Figure A2. Streamline divergence.
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The Thin Oil Film Equation

James L. Brown and Jonathan W. Naughton

A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a
three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and
gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers'
equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct
numerical solver is developed where the wall shear stress variation on the surface is known and which
solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also
developed where the oil film thickness spatial variation over the surface at two discrete times is known and
which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is
also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved
form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To
demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examina-
tion is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity
of a three-dimensional saddle of separation.
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Technical Memorandum

Point of Contact:  James L. Brown, Ames Research Center, MS 229-1,  Moffett Field, CA 94035-1000
   (650) 604-6229


